These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27578615)

  • 1. Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control.
    Frost HR; Shen L; Saykin AJ; Williams SM; Moore JH;
    Genet Epidemiol; 2016 Nov; 40(7):544-557. PubMed ID: 27578615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression.
    Frost HR; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2015; ():183-94. PubMed ID: 25592580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.
    Hüls A; Ickstadt K; Schikowski T; Krämer U
    BMC Genet; 2017 Jun; 18(1):55. PubMed ID: 28606108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global test for gene-gene interactions based on random matrix theory.
    Frost HR; Amos CI; Moore JH
    Genet Epidemiol; 2016 Dec; 40(8):689-701. PubMed ID: 27386793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved two-step testing of genome-wide gene-environment interactions.
    Kawaguchi ES; Kim AE; Lewinger JP; Gauderman WJ
    Genet Epidemiol; 2023 Mar; 47(2):152-166. PubMed ID: 36571162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease.
    Abraham G; Kowalczyk A; Zobel J; Inouye M
    Genet Epidemiol; 2013 Feb; 37(2):184-95. PubMed ID: 23203348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting genetic association through shortest paths in a bidirected graph.
    Ueki M; Kawasaki Y; Tamiya G;
    Genet Epidemiol; 2017 Sep; 41(6):481-497. PubMed ID: 28626864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of power of statistical methods for gene-environment interaction analyses.
    Ege MJ; Strachan DP
    Eur J Epidemiol; 2013 Oct; 28(10):785-97. PubMed ID: 24005774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination test for detection of gene-environment interaction in cohort studies.
    Coombes B; Basu S; McGue M
    Genet Epidemiol; 2017 Jul; 41(5):396-412. PubMed ID: 28370330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies.
    Sanyal N; Lo MT; Kauppi K; Djurovic S; Andreassen OA; Johnson VE; Chen CH
    Bioinformatics; 2019 Jan; 35(1):1-11. PubMed ID: 29931045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-assessment of multiple testing strategies for more efficient genome-wide association studies.
    Otani T; Noma H; Nishino J; Matsui S
    Eur J Hum Genet; 2018 Jul; 26(7):1038-1048. PubMed ID: 29523830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
    Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T
    Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables.
    Hecker J; Prokopenko D; Moll M; Lee S; Kim W; Qiao D; Voorhies K; Kim W; Vansteelandt S; Hobbs BD; Cho MH; Silverman EK; Lutz SM; DeMeo DL; Weiss ST; Lange C
    PLoS Genet; 2022 Nov; 18(11):e1010464. PubMed ID: 36383614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data.
    Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M
    Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test for interactions between a genetic marker set and environment in generalized linear models.
    Lin X; Lee S; Christiani DC; Lin X
    Biostatistics; 2013 Sep; 14(4):667-81. PubMed ID: 23462021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
    Zhang P; Lewinger JP; Conti D; Morrison JL; Gauderman WJ
    Genet Epidemiol; 2016 Jul; 40(5):394-403. PubMed ID: 27230133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Bayes model averaging to leverage both gene main effects and G ×  E interactions to identify genomic regions in genome-wide association studies.
    Moss LC; Gauderman WJ; Lewinger JP; Conti DV
    Genet Epidemiol; 2019 Mar; 43(2):150-165. PubMed ID: 30456811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.