BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27578615)

  • 1. Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control.
    Frost HR; Shen L; Saykin AJ; Williams SM; Moore JH;
    Genet Epidemiol; 2016 Nov; 40(7):544-557. PubMed ID: 27578615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression.
    Frost HR; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2015; ():183-94. PubMed ID: 25592580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.
    Hüls A; Ickstadt K; Schikowski T; Krämer U
    BMC Genet; 2017 Jun; 18(1):55. PubMed ID: 28606108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global test for gene-gene interactions based on random matrix theory.
    Frost HR; Amos CI; Moore JH
    Genet Epidemiol; 2016 Dec; 40(8):689-701. PubMed ID: 27386793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved two-step testing of genome-wide gene-environment interactions.
    Kawaguchi ES; Kim AE; Lewinger JP; Gauderman WJ
    Genet Epidemiol; 2023 Mar; 47(2):152-166. PubMed ID: 36571162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease.
    Abraham G; Kowalczyk A; Zobel J; Inouye M
    Genet Epidemiol; 2013 Feb; 37(2):184-95. PubMed ID: 23203348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting genetic association through shortest paths in a bidirected graph.
    Ueki M; Kawasaki Y; Tamiya G;
    Genet Epidemiol; 2017 Sep; 41(6):481-497. PubMed ID: 28626864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of power of statistical methods for gene-environment interaction analyses.
    Ege MJ; Strachan DP
    Eur J Epidemiol; 2013 Oct; 28(10):785-97. PubMed ID: 24005774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination test for detection of gene-environment interaction in cohort studies.
    Coombes B; Basu S; McGue M
    Genet Epidemiol; 2017 Jul; 41(5):396-412. PubMed ID: 28370330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GWASinlps: non-local prior based iterative SNP selection tool for genome-wide association studies.
    Sanyal N; Lo MT; Kauppi K; Djurovic S; Andreassen OA; Johnson VE; Chen CH
    Bioinformatics; 2019 Jan; 35(1):1-11. PubMed ID: 29931045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-assessment of multiple testing strategies for more efficient genome-wide association studies.
    Otani T; Noma H; Nishino J; Matsui S
    Eur J Hum Genet; 2018 Jul; 26(7):1038-1048. PubMed ID: 29523830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.
    Vaitsiakhovich T; Drichel D; Herold C; Lacour A; Becker T
    Bioinformatics; 2015 Jan; 31(2):151-7. PubMed ID: 25252781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables.
    Hecker J; Prokopenko D; Moll M; Lee S; Kim W; Qiao D; Voorhies K; Kim W; Vansteelandt S; Hobbs BD; Cho MH; Silverman EK; Lutz SM; DeMeo DL; Weiss ST; Lange C
    PLoS Genet; 2022 Nov; 18(11):e1010464. PubMed ID: 36383614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach.
    Carlsen M; Fu G; Bushman S; Corcoran C
    Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data.
    Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M
    Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Test for interactions between a genetic marker set and environment in generalized linear models.
    Lin X; Lee S; Christiani DC; Lin X
    Biostatistics; 2013 Sep; 14(4):667-81. PubMed ID: 23462021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
    Zhang P; Lewinger JP; Conti D; Morrison JL; Gauderman WJ
    Genet Epidemiol; 2016 Jul; 40(5):394-403. PubMed ID: 27230133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Bayes model averaging to leverage both gene main effects and G ×  E interactions to identify genomic regions in genome-wide association studies.
    Moss LC; Gauderman WJ; Lewinger JP; Conti DV
    Genet Epidemiol; 2019 Mar; 43(2):150-165. PubMed ID: 30456811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.