These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2757862)
1. Initial experience with a microprocessor controlled current based defibrillator. Dalzell GW; Cunningham SR; Anderson J; Adgey AA Br Heart J; 1989 Jun; 61(6):502-5. PubMed ID: 2757862 [TBL] [Abstract][Full Text] [Related]
2. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation. Dalzell GW; Adgey AA Br Heart J; 1991 Jun; 65(6):311-6. PubMed ID: 2054239 [TBL] [Abstract][Full Text] [Related]
3. Electrode pad size, transthoracic impedance and success of external ventricular defibrillation. Dalzell GW; Cunningham SR; Anderson J; Adgey AA Am J Cardiol; 1989 Oct; 64(12):741-4. PubMed ID: 2801525 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of lower-energy biphasic shocks for transthoracic defibrillation: a follow-up clinical study. Higgins SL; O'Grady SG; Banville I; Chapman FW; Schmitt PW; Lank P; Walker RG; Ilina M Prehosp Emerg Care; 2004; 8(3):262-7. PubMed ID: 15295725 [TBL] [Abstract][Full Text] [Related]
5. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. Kerber RE; Martins JB; Kienzle MG; Constantin L; Olshansky B; Hopson R; Charbonnier F Circulation; 1988 May; 77(5):1038-46. PubMed ID: 3359585 [TBL] [Abstract][Full Text] [Related]
6. A comparison of defibrillation efficacy between different impedance compensation techniques in high impedance porcine model. Li Y; Ristagno G; Yu T; Bisera J; Weil MH; Tang W Resuscitation; 2009 Nov; 80(11):1312-7. PubMed ID: 19720442 [TBL] [Abstract][Full Text] [Related]
8. Factors determining success and energy requirements for cardioversion of atrial fibrillation. Dalzell GW; Anderson J; Adgey AA Q J Med; 1990 Sep; 76(281):903-13. PubMed ID: 2236476 [TBL] [Abstract][Full Text] [Related]
9. Automated impedance-based energy adjustment for defibrillation: experimental studies. Kerber RE; McPherson D; Charbonnier F; Kieso R; Hite P Circulation; 1985 Jan; 71(1):136-40. PubMed ID: 3964715 [TBL] [Abstract][Full Text] [Related]
10. Advance prediction of transthoracic impedance in human defibrillation and cardioversion: importance of impedance in determining the success of low-energy shocks. Kerber RE; Kouba C; Martins J; Kelly K; Low R; Hoyt R; Ferguson D; Bailey L; Bennett P; Charbonnier F Circulation; 1984 Aug; 70(2):303-8. PubMed ID: 6733884 [TBL] [Abstract][Full Text] [Related]
11. Effects of transthoracic impedance and peak current flow on defibrillation success in a prehospital setting. Heavens JP; Cleland MJ; Maloney JP; Rowe BH Ann Emerg Med; 1998 Aug; 32(2):191-9. PubMed ID: 9701302 [TBL] [Abstract][Full Text] [Related]
12. Factors determining success and energy requirements for cardioversion of atrial fibrillation: revised version. Dalzell GW; Anderson J; Adgey AA Q J Med; 1991 Jan; 78(285):85-95. PubMed ID: 1670068 [TBL] [Abstract][Full Text] [Related]
13. Influence of ventilation phase on transthoracic impedance and defibrillation effectiveness. Ewy GA; Hellman DA; McClung S; Taren D Crit Care Med; 1980 Mar; 8(3):164-6. PubMed ID: 7363632 [TBL] [Abstract][Full Text] [Related]
14. Quadriphasic waveforms are superior to triphasic waveforms for transthoracic defibrillation in a cardiac arrest swine model with high impedance. Zhang Y; Rhee B; Davies LR; Zimmerman MB; Snyder D; Jones JL; Kerber RE Resuscitation; 2006 Feb; 68(2):251-8. PubMed ID: 16325983 [TBL] [Abstract][Full Text] [Related]
15. Current is better than energy as predictor of success for biphasic defibrillatory shocks in a porcine model of ventricular fibrillation. Ristagno G; Yu T; Quan W; Freeman G; Li Y Resuscitation; 2013 May; 84(5):678-83. PubMed ID: 23032689 [TBL] [Abstract][Full Text] [Related]
16. Effect of application of force to self-adhesive defibrillator pads on transthoracic electrical impedance and countershock success. Persse DE; Dzwonczyk R; Brown CG Ann Emerg Med; 1999 Aug; 34(2):129-33. PubMed ID: 10424911 [TBL] [Abstract][Full Text] [Related]
17. Retrospective evaluation of current-based impedance compensation defibrillation in out-of-hospital cardiac arrest. Chen B; Yin C; Ristagno G; Quan W; Tan Q; Freeman G; Li Y Resuscitation; 2013 May; 84(5):580-5. PubMed ID: 23000364 [TBL] [Abstract][Full Text] [Related]
18. Current-based versus energy-based ventricular defibrillation: a prospective study. Lerman BB; DiMarco JP; Haines DE J Am Coll Cardiol; 1988 Nov; 12(5):1259-64. PubMed ID: 3170969 [TBL] [Abstract][Full Text] [Related]
19. Transthoracic impedance does not affect defibrillation, resuscitation or survival in patients with out-of-hospital cardiac arrest treated with a non-escalating biphasic waveform defibrillator. White RD; Blackwell TH; Russell JK; Snyder DE; Jorgenson DB Resuscitation; 2005 Jan; 64(1):63-9. PubMed ID: 15629557 [TBL] [Abstract][Full Text] [Related]
20. Analysis of transthoracic impedance during real cardiac arrest defibrillation attempts in older children and adolescents: are stacked-shocks appropriate? Niles DE; Nishisaki A; Sutton RM; Brunner S; Stavland M; Mahadevaiah S; Meaney PA; Maltese MR; Berg RA; Nadkarni VM Resuscitation; 2010 Nov; 81(11):1540-3. PubMed ID: 20708836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]