BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27578758)

  • 1. The Nucleoid Binding Protein H-NS Biases Genome-Wide Transposon Insertion Landscapes.
    Kimura S; Hubbard TP; Davis BM; Waldor MK
    mBio; 2016 Aug; 7(4):. PubMed ID: 27578758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposon Insertion Site Sequencing for Synthetic Lethal Screening.
    Yamaichi Y; Dörr T
    Methods Mol Biol; 2017; 1624():39-49. PubMed ID: 28842874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised Learning Approach for Comparing Multiple Transposon Insertion Sequencing Studies.
    Hubbard TP; D'Gama JD; Billings G; Davis BM; Waldor MK
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the histone-like nucleoid structuring protein in the regulation of rpoS and RpoS-dependent genes in Vibrio cholerae.
    Silva AJ; Sultan SZ; Liang W; Benitez JA
    J Bacteriol; 2008 Nov; 190(22):7335-45. PubMed ID: 18790865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing.
    Pritchard JR; Chao MC; Abel S; Davis BM; Baranowski C; Zhang YJ; Rubin EJ; Waldor MK
    PLoS Genet; 2014 Nov; 10(11):e1004782. PubMed ID: 25375795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data.
    Chao MC; Pritchard JR; Zhang YJ; Rubin EJ; Livny J; Davis BM; Waldor MK
    Nucleic Acids Res; 2013 Oct; 41(19):9033-48. PubMed ID: 23901011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No-Go Zones for Mariner Transposition.
    Akerley BJ
    mBio; 2016 Oct; 7(5):. PubMed ID: 27729512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection.
    Yang G; Billings G; Hubbard TP; Park JS; Yin Leung K; Liu Q; Davis BM; Zhang Y; Wang Q; Waldor MK
    mBio; 2017 Oct; 8(5):. PubMed ID: 28974620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H-NS: an overarching regulator of the Vibrio cholerae life cycle.
    Ayala JC; Silva AJ; Benitez JA
    Res Microbiol; 2017 Jan; 168(1):16-25. PubMed ID: 27492955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive identification of Vibrio vulnificus genes required for growth in human serum.
    Carda-Diéguez M; Silva-Hernández FX; Hubbard TP; Chao MC; Waldor MK; Amaro C
    Virulence; 2018 Dec; 9(1):981-993. PubMed ID: 29697309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposon insertion site sequencing (TIS) of Pseudomonas aeruginosa.
    Cho H
    J Microbiol; 2021 Dec; 59(12):1067-1074. PubMed ID: 34865196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random Transposon Mutagenesis of Vibrio cholerae.
    Matson JS
    Methods Mol Biol; 2018; 1839():39-44. PubMed ID: 30047052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposon Insertion Sequencing in a Clinical Isolate of Legionella pneumophila Identifies Essential Genes and Determinants of Natural Transformation.
    Hardy L; Juan PA; Coupat-Goutaland B; Charpentier X
    J Bacteriol; 2021 Jan; 203(3):. PubMed ID: 33168636
    [No Abstract]   [Full Text] [Related]  

  • 14. Transposon Insertion Site Sequencing (TIS-Seq): An Efficient and High-Throughput Method for Determining Transposon Insertion Site(s) and Their Relative Abundances in a PiggyBac Transposon Mutant Pool by Next-Generation Sequencing.
    Veeranagouda Y; Didier M
    Curr Protoc Mol Biol; 2017 Oct; 120():21.35.1-21.35.11. PubMed ID: 28967994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrio cholerae H-NS domain structure and function with respect to transcriptional repression of ToxR regulon genes reveals differences among H-NS family members.
    Nye MB; Taylor RK
    Mol Microbiol; 2003 Oct; 50(2):427-44. PubMed ID: 14617169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducible and accessible analysis of transposon insertion sequencing in Galaxy for qualitative essentiality analyses.
    Larivière D; Wickham L; Keiler K; Nekrutenko A;
    BMC Microbiol; 2021 Jun; 21(1):168. PubMed ID: 34090324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing Causes for False-Positive and False-Negative Calling of Gene Essentiality in Escherichia coli Using Transposon Insertion Sequencing.
    Choe D; Kim U; Hwang S; Seo SW; Kim D; Cho S; Palsson B; Cho BK
    mSystems; 2023 Feb; 8(1):e0089622. PubMed ID: 36507678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Site-Specific Nucleotide Biases Affecting Himar1 Transposon Insertion Frequencies in TnSeq Data Sets.
    Choudhery S; Brown AJ; Akusobi C; Rubin EJ; Sassetti CM; Ioerger TR
    mSystems; 2021 Oct; 6(5):e0087621. PubMed ID: 34665010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method of Transposon Insertion Sequencing in Comprehensively Identifying Vibrio vulnificus Genes Required for Growth in Human Serum.
    Carda-Diéguez M; Amaro C
    Methods Mol Biol; 2022; 2377():159-178. PubMed ID: 34709616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid.
    Ayala JC; Wang H; Silva AJ; Benitez JA
    Mol Microbiol; 2015 Aug; 97(4):630-45. PubMed ID: 25982817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.