BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27579512)

  • 21. Toxicity reference values for polybrominated diphenyl ethers: risk assessment for predatory birds and mammals from two Chinese lakes.
    Zhang R; Guo J; Wu F; Mu Y; Giesy JP; Chang H; Zhao X; Feng C
    Rev Environ Contam Toxicol; 2014; 229():111-37. PubMed ID: 24515812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions.
    Dhond AK; Barron MG
    Environ Sci Technol; 2022 Dec; 56(23):17188-17196. PubMed ID: 36410104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental benchmarks based on ecotoxicological assessment with planktonic species might not adequately protect benthic assemblages in lotic systems.
    Vidal T; Santos JI; Queirós L; Ré A; Abrantes N; Gonçalves FJM; Pereira JL
    Sci Total Environ; 2019 Jun; 668():1289-1297. PubMed ID: 31018468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecological hazard assessment of dioxins: hazards to organisms at different levels of aquatic food webs (fish-eating birds and mammals, fish and invertebrates).
    Loonen H; van de Guchte C; Parsons JR; de Voogt P; Govers HA
    Sci Total Environ; 1996 Apr; 182(1-3):93-103. PubMed ID: 8854941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Do predictions from Species Sensitivity Distributions match with field data?
    Smetanová S; Bláha L; Liess M; Schäfer RB; Beketov MA
    Environ Pollut; 2014 Jun; 189():126-33. PubMed ID: 24657606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The difference between temperate and tropical saltwater species' acute sensitivity to chemicals is relatively small.
    Wang Z; Kwok KW; Lui GC; Zhou GJ; Lee JS; Lam MH; Leung KM
    Chemosphere; 2014 Jun; 105():31-43. PubMed ID: 24289976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One uncertainty factor does not fit all: Identifying mode of action and species specific acute to chronic ratios for aquatic life.
    Wang Z; Berninger JP; You J; Brooks BW
    Environ Pollut; 2020 Jul; 262():114262. PubMed ID: 32120260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eco-epidemiology of aquatic ecosystems: Separating chemicals from multiple stressors.
    Posthuma L; Dyer SD; de Zwart D; Kapo K; Holmes CM; Burton GA
    Sci Total Environ; 2016 Dec; 573():1303-1319. PubMed ID: 27519323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating population-level HC5 for copper using a species sensitivity distribution approach.
    Iwasaki Y; Hayashi TI; Kamo M
    Environ Toxicol Chem; 2013 Jun; 32(6):1396-402. PubMed ID: 23417717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Which distribution to choose for deriving a species sensitivity distribution? Implications from analysis of acute and chronic ecotoxicity data.
    Yanagihara M; Hiki K; Iwasaki Y
    Ecotoxicol Environ Saf; 2024 Jun; 278():116379. PubMed ID: 38714082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mean Species Abundance as a Measure of Ecotoxicological Risk.
    Hoeks S; Huijbregts MAJ; Douziech M; Hendriks AJ; Oldenkamp R
    Environ Toxicol Chem; 2020 Nov; 39(11):2304-2313. PubMed ID: 32786097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron.
    Brock TC; Crum SJ; Deneer JW; Heimbach F; Roijackers RM; Sinkeldam JA
    Environ Pollut; 2004 Aug; 130(3):403-26. PubMed ID: 15182972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Risk assessment of episodic exposures to chemicals should consider both the physiological and the ecological sensitivities of species.
    Kefford BJ; Liess M; Warne MS; Metzeling L; Schäfer RB
    Sci Total Environ; 2012 Dec; 441():213-9. PubMed ID: 23137987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aquatic risk assessment of alcohol ethoxylates in North America and Europe.
    Belanger SE; Dorn PB; Toy R; Boeije G; Marshall SJ; Wind T; Van Compernolle R; Zeller D
    Ecotoxicol Environ Saf; 2006 May; 64(1):85-99. PubMed ID: 16439022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of specific versus literature species sensitivity distributions for herbicides risk assessment.
    Larras F; Gregorio V; Bouchez A; Montuelle B; Chèvre N
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3042-52. PubMed ID: 26396014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A re-evaluation of fifteen years of European risk assessment using effect models.
    De Laender F; Van Sprang P; Janssen CR
    Environ Toxicol Chem; 2013 Mar; 32(3):594-601. PubMed ID: 23239137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revisiting assessment factors for species sensitivity distributions as a function of sample size and variation in species sensitivity.
    Kamo M; Hayashi TI; Iwasaki Y
    Ecotoxicol Environ Saf; 2022 Nov; 246():114170. PubMed ID: 36242822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of herbicide species sensitivity distribution using single-species algal toxicity data and information on the mode of action.
    Nagai T; Taya K
    Environ Toxicol Chem; 2015 Mar; 34(3):677-84. PubMed ID: 25475367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of in silico development of aquatic toxicity species sensitivity distributions.
    Barron MG; Jackson CR; Awkerman JA
    Aquat Toxicol; 2012 Jul; 116-117():1-7. PubMed ID: 22459408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SSDs revisited: part II-practical considerations in the development and use of application factors applied to species sensitivity distributions.
    Belanger SE; Carr GJ
    Environ Toxicol Chem; 2019 Jul; 38(7):1526-1541. PubMed ID: 30994956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.