BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27580003)

  • 1. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance.
    Mignano AP; Kadapa S; Drago AC; Lauder GV; Kwatny HG; Tangorra JL
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays.
    Das S; Kunjam P; Ebeling JF; Barthelat F
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38722377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric fin shape changes swimming dynamics of ancient marine reptiles' soft robophysical models.
    Sprumont H; Allione F; Schwab F; Wang B; Mucignat C; Lunati I; Scheyer T; Ijspeert A; Jusufi A
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38626775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of caudal fin stiffness on optimized forward swimming and turning maneuver in a robotic swimmer.
    Deng H; Li D; Panta K; Wertz A; Priya S; Cheng B
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38430560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and control of an embedded vision guided robotic fish with multiple control surfaces.
    Yu J; Wang K; Tan M; Zhang J
    ScientificWorldJournal; 2014; 2014():631296. PubMed ID: 24688413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27009180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanosensation is evolutionarily tuned to locomotor mechanics.
    Aiello BR; Westneat MW; Hale ME
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4459-4464. PubMed ID: 28396411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes.
    Walker JA; Alfaro ME; Noble MM; Fulton CJ
    PLoS One; 2013; 8(10):e75422. PubMed ID: 24204575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Numerical Study of Hydrodynamic Interactions between Pectoral Fins and the Body of Aquatic Organisms.
    Morifusa K; Fukui T
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuna locomotion: a computational hydrodynamic analysis of finlet function.
    Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H
    J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle.
    Wang R; Zhang C; Zhang Y; Yang L; Tan W; Qin H; Wang F; Liu L
    Soft Robot; 2024 Feb; ():. PubMed ID: 38407844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pectoral Fin Propulsion Performance Analysis of Robotic Fish with Multiple Degrees of Freedom Based on Burst-and-Coast Swimming Behavior Stroke Ratio.
    Li Z; Li B; Li H; Xia G
    Biomimetics (Basel); 2024 May; 9(5):. PubMed ID: 38786511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adipose fin development and its relation to the evolutionary origins of median fins.
    Stewart TA; Bonilla MM; Ho RK; Hale ME
    Sci Rep; 2019 Jan; 9(1):512. PubMed ID: 30679662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Adaptable Flying Fish Robotic Model for Aero- and Hydrodynamic Experimentation.
    Saro-Cortes V; Cui Y; Dufficy T; Boctor A; Flammang BE; Wissa AW
    Integr Comp Biol; 2022 Jun; ():. PubMed ID: 35771996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fin sweep angle does not determine flapping propulsive performance.
    Zurman-Nasution AN; Ganapathisubramani B; Weymouth GD
    J R Soc Interface; 2021 May; 18(178):20210174. PubMed ID: 34034533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish can use coordinated fin motions to recapture their own vortex wake energy.
    Tack NB; Du Clos KT; Gemmell BJ
    R Soc Open Sci; 2024 Jan; 11(1):231265. PubMed ID: 38179082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-inspired compensatory strategies for damage to flapping robotic propulsors.
    Hooper ML; Scherl I; Gharib M
    J R Soc Interface; 2024 Jul; 21(216):20240141. PubMed ID: 38955227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and 3-D Path-Following Control of an Agile Robotic Manta With Flexible Pectoral Fins.
    Meng Y; Wu Z; Chen D; Zhang P; Tan M; Yu J
    IEEE Trans Cybern; 2024 Jun; 54(6):3727-3738. PubMed ID: 37028388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.