These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27580003)

  • 21. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pectoral fin locomotion in batoid fishes: undulation versus oscillation.
    Rosenberger LJ
    J Exp Biol; 2001 Jan; 204(Pt 2):379-94. PubMed ID: 11136623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot.
    Park YJ; Huh TM; Park D; Cho KJ
    Bioinspir Biomim; 2014 Sep; 9(3):036002. PubMed ID: 24584214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by the freshwater stingray Potamotrygon orbignyi.
    Macesic LJ; Mulvaney D; Blevins EL
    Zoology (Jena); 2013 Jun; 116(3):144-50. PubMed ID: 23477972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance limits of labriform propulsion and correlates with fin shape and motion.
    Walker JA; Westneat MW
    J Exp Biol; 2002 Jan; 205(Pt 2):177-87. PubMed ID: 11821484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional morphology of the fin rays of teleost fishes.
    Flammang BE; Alben S; Madden PG; Lauder GV
    J Morphol; 2013 Sep; 274(9):1044-59. PubMed ID: 23720195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradients of properties increase the morphing and stiffening performance of bioinspired synthetic fin rays.
    Das S; Kunjam P; Ebeling JF; Barthelat F
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38722377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biorobotic insights into how animals swim.
    Bandyopadhyay PR; Beal DN; Menozzi A
    J Exp Biol; 2008 Jan; 211(Pt 2):206-14. PubMed ID: 18165248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L; Lauder G
    Bioinspir Biomim; 2013 Dec; 8(4):046013. PubMed ID: 24263114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric fin shape changes swimming dynamics of ancient marine reptiles' soft robophysical models.
    Sprumont H; Allione F; Schwab F; Wang B; Mucignat C; Lunati I; Scheyer T; Ijspeert A; Jusufi A
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38626775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of caudal fin stiffness on optimized forward swimming and turning maneuver in a robotic swimmer.
    Deng H; Li D; Panta K; Wertz A; Priya S; Cheng B
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38430560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotion with flexible propulsors: I. Experimental analysis of pectoral fin swimming in sunfish.
    Lauder GV; Madden PG; Mittal R; Dong H; Bozkurttas M
    Bioinspir Biomim; 2006 Dec; 1(4):S25-34. PubMed ID: 17671315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and control of an embedded vision guided robotic fish with multiple control surfaces.
    Yu J; Wang K; Tan M; Zhang J
    ScientificWorldJournal; 2014; 2014():631296. PubMed ID: 24688413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes.
    Fu C; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Mar; 164(3):456-65. PubMed ID: 23269108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance.
    Esposito CJ; Tangorra JL; Flammang BE; Lauder GV
    J Exp Biol; 2012 Jan; 215(Pt 1):56-67. PubMed ID: 22162853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locomotion of free-swimming ghost knifefish: anal fin kinematics during four behaviors.
    Youngerman ED; Flammang BE; Lauder GV
    Zoology (Jena); 2014 Oct; 117(5):337-48. PubMed ID: 25043841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves.
    Li G; Müller UK; van Leeuwen JL; Liu H
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27009180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fish locomotion: recent advances and new directions.
    Lauder GV
    Ann Rev Mar Sci; 2015; 7():521-45. PubMed ID: 25251278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.