These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 27580258)
1. Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Sassoubre LM; Yamahara KM; Gardner LD; Block BA; Boehm AB Environ Sci Technol; 2016 Oct; 50(19):10456-10464. PubMed ID: 27580258 [TBL] [Abstract][Full Text] [Related]
2. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus). Nevers MB; Byappanahalli MN; Morris CC; Shively D; Przybyla-Kelly K; Spoljaric AM; Dickey J; Roseman EF PLoS One; 2018; 13(1):e0191720. PubMed ID: 29357382 [TBL] [Abstract][Full Text] [Related]
3. Persistence of marine fish environmental DNA and the influence of sunlight. Andruszkiewicz EA; Sassoubre LM; Boehm AB PLoS One; 2017; 12(9):e0185043. PubMed ID: 28915253 [TBL] [Abstract][Full Text] [Related]
4. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. Thomsen PF; Kielgast J; Iversen LL; Møller PR; Rasmussen M; Willerslev E PLoS One; 2012; 7(8):e41732. PubMed ID: 22952584 [TBL] [Abstract][Full Text] [Related]
5. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Hänfling B; Lawson Handley L; Read DS; Hahn C; Li J; Nichols P; Blackman RC; Oliver A; Winfield IJ Mol Ecol; 2016 Jul; 25(13):3101-19. PubMed ID: 27095076 [TBL] [Abstract][Full Text] [Related]
6. Environmental DNA from Seawater Samples Correlate with Trawl Catches of Subarctic, Deepwater Fishes. Thomsen PF; Møller PR; Sigsgaard EE; Knudsen SW; Jørgensen OA; Willerslev E PLoS One; 2016; 11(11):e0165252. PubMed ID: 27851757 [TBL] [Abstract][Full Text] [Related]
7. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Jo T; Murakami H; Yamamoto S; Masuda R; Minamoto T Ecol Evol; 2019 Feb; 9(3):1135-1146. PubMed ID: 30805147 [TBL] [Abstract][Full Text] [Related]
8. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Evans NT; Olds BP; Renshaw MA; Turner CR; Li Y; Jerde CL; Mahon AR; Pfrender ME; Lamberti GA; Lodge DM Mol Ecol Resour; 2016 Jan; 16(1):29-41. PubMed ID: 26032773 [TBL] [Abstract][Full Text] [Related]
9. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods. Fujii K; Doi H; Matsuoka S; Nagano M; Sato H; Yamanaka H PLoS One; 2019; 14(1):e0210357. PubMed ID: 30703107 [TBL] [Abstract][Full Text] [Related]
10. Environmental DNA as a 'Snapshot' of Fish Distribution: A Case Study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. Yamamoto S; Minami K; Fukaya K; Takahashi K; Sawada H; Murakami H; Tsuji S; Hashizume H; Kubonaga S; Horiuchi T; Hongo M; Nishida J; Okugawa Y; Fujiwara A; Fukuda M; Hidaka S; Suzuki KW; Miya M; Araki H; Yamanaka H; Maruyama A; Miyashita K; Masuda R; Minamoto T; Kondoh M PLoS One; 2016; 11(3):e0149786. PubMed ID: 26933889 [TBL] [Abstract][Full Text] [Related]
11. Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities. Miya M Ann Rev Mar Sci; 2022 Jan; 14():161-185. PubMed ID: 34351788 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of spatiotemporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Brys R; Haegeman A; Halfmaerten D; Neyrinck S; Staelens A; Auwerx J; Ruttink T Mol Ecol; 2021 Jul; 30(13):3097-3110. PubMed ID: 33222312 [TBL] [Abstract][Full Text] [Related]
13. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Jo T; Murakami H; Masuda R; Sakata MK; Yamamoto S; Minamoto T Mol Ecol Resour; 2017 Nov; 17(6):e25-e33. PubMed ID: 28449215 [TBL] [Abstract][Full Text] [Related]
14. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Yao M; Zhang S; Lu Q; Chen X; Zhang SY; Kong Y; Zhao J Mol Ecol; 2022 Oct; 31(20):5132-5164. PubMed ID: 35972241 [TBL] [Abstract][Full Text] [Related]
15. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Sigsgaard EE; Torquato F; Frøslev TG; Moore ABM; Sørensen JM; Range P; Ben-Hamadou R; Bach SS; Møller PR; Thomsen PF Conserv Biol; 2020 Jun; 34(3):697-710. PubMed ID: 31729081 [TBL] [Abstract][Full Text] [Related]
16. Chlorinated hydrocarbons in pelagic forage fishes and squid of the Southern California Bight. Jarvis E; Schiff K; Sabin L; Allen MJ Environ Toxicol Chem; 2007 Nov; 26(11):2290-8. PubMed ID: 17941729 [TBL] [Abstract][Full Text] [Related]
17. Using environmental DNA to census marine fishes in a large mesocosm. Kelly RP; Port JA; Yamahara KM; Crowder LB PLoS One; 2014; 9(1):e86175. PubMed ID: 24454960 [TBL] [Abstract][Full Text] [Related]
18. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. Doi H; Uchii K; Takahara T; Matsuhashi S; Yamanaka H; Minamoto T PLoS One; 2015; 10(3):e0122763. PubMed ID: 25799582 [TBL] [Abstract][Full Text] [Related]
19. Environmental DNA (eDNA) Shedding and Decay Rates to Model Freshwater Mussel eDNA Transport in a River. Sansom BJ; Sassoubre LM Environ Sci Technol; 2017 Dec; 51(24):14244-14253. PubMed ID: 29131600 [TBL] [Abstract][Full Text] [Related]
20. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Harrison JB; Sunday JM; Rogers SM Proc Biol Sci; 2019 Nov; 286(1915):20191409. PubMed ID: 31744434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]