These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2758031)

  • 1. Distinct patterns in homooligomer tract sequence context in prokaryotic and eukaryotic DNA.
    Nussinov R; Sarai A; Smythers GW; Jernigan RL
    Biochim Biophys Acta; 1989 Aug; 1008(3):329-38. PubMed ID: 2758031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong patterns in homooligomer tracts occurrences in non-coding and in potential regulatory sites in eukaryotic genomes.
    Nussinov R; Sarai A; Smythers GW; Wang D; Jernigan RL
    J Biomol Struct Dyn; 1989 Dec; 7(3):707-22. PubMed ID: 2627306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct patterns in the dinucleotide nearest neighbors to G/C and A/T oligomers in eukaryotic sequences.
    Nussinov R
    J Mol Evol; 1991 Sep; 33(3):259-66. PubMed ID: 1757996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence context of oligomer tracts in eukaryotic DNA: biological and conformational implications.
    Nussinov R; Sarai A; Smythers GW; Jernigan RL
    J Biomol Struct Dyn; 1988 Dec; 6(3):543-62. PubMed ID: 3271538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ordering of nucleotides in the DNA: strong pyrimidine-purine patterns near homooligomer tracts.
    Nussinov R
    J Theor Biol; 1991 Mar; 149(1):21-42. PubMed ID: 1881144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General nearest neighbor preferences in G/C oligomers interrupted by A/T: correlation with DNA structure.
    Nussinov R
    J Biomol Struct Dyn; 1990 Oct; 8(2):399-411. PubMed ID: 2268407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overabundance of long oligopurine tracts occurs in the genome of simple and complex eukaryotes.
    Behe MJ
    Nucleic Acids Res; 1995 Feb; 23(4):689-95. PubMed ID: 7899090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the interplay between nucleoid-associated proteins, DNA curvature, and CRISPR elements using comparative genomics.
    Tong H; Mrázek J
    PLoS One; 2014; 9(3):e90940. PubMed ID: 24595272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologies between sugar transporters from eukaryotes and prokaryotes.
    Baldwin SA; Henderson PJ
    Annu Rev Physiol; 1989; 51():459-71. PubMed ID: 2540699
    [No Abstract]   [Full Text] [Related]  

  • 10. Differences in DNA curvature-related sequence periodicity between prokaryotic chromosomes and phages, and relationship to chromosomal prophage content.
    Abel J; Mrázek J
    BMC Genomics; 2012 May; 13():188. PubMed ID: 22587570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of eukaryotic introns: a hypothesis, based on codon distribution statistics in genes, and its implications.
    Senapathy P
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2133-7. PubMed ID: 3457379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homopolymer tract length dependent enrichments in functional regions of 27 eukaryotes and their novel dependence on the organism DNA (G+C)% composition.
    Zhou Y; Bizzaro JW; Marx KA
    BMC Genomics; 2004 Dec; 5():95. PubMed ID: 15598342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule.
    Ku C; Martin WF
    BMC Biol; 2016 Oct; 14(1):89. PubMed ID: 27751184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-polymer tracts in eukaryotic, prokaryotic, and organellar DNA.
    Behe MJ; Beasty AM
    DNA Seq; 1991; 1(5):291-302. PubMed ID: 1799681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species-specific patterns of DNA bending and sequence.
    VanWye JD; Bronson EC; Anderson JN
    Nucleic Acids Res; 1991 Oct; 19(19):5253-61. PubMed ID: 1923808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The patterns of base sequences in the nucleic acids of prokaryotes and eukaryotes reflect features of their abiotic past.
    Pontes F; Rusu V; de Barros Neto B; Ferreira R
    Z Naturforsch C J Biosci; 2008; 63(11-12):898-902. PubMed ID: 19227842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compilation of small ribosomal subunit RNA sequences.
    Huysmans E; De Wachter R
    Nucleic Acids Res; 1986; 14 Suppl(Suppl):r73-118. PubMed ID: 3085068
    [No Abstract]   [Full Text] [Related]  

  • 18. On the role of homologous sequences in chromosomal rearrangements.
    Singer BS
    Genes Dev; 1988 Dec; 2(12B):1800-11. PubMed ID: 3240860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system.
    Aravind L; Koonin EV
    Genome Res; 2001 Aug; 11(8):1365-74. PubMed ID: 11483577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence signals in eukaryotic upstream regions.
    Nussinov R
    Crit Rev Biochem Mol Biol; 1990; 25(3):185-224. PubMed ID: 2196161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.