These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27580350)

  • 1. Self-Propelled Oil Droplets and Their Morphological Change to Giant Vesicles Induced by a Surfactant Solution at Low pH.
    Banno T; Tanaka Y; Asakura K; Toyota T
    Langmuir; 2016 Sep; 32(37):9591-7. PubMed ID: 27580350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
    Banno T; Toyota T
    Langmuir; 2015 Jun; 31(25):6943-7. PubMed ID: 26073277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.
    Banno T; Kuroha R; Toyota T
    Langmuir; 2012 Jan; 28(2):1190-5. PubMed ID: 22149384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotion Mode of Micrometer-Sized Oil Droplets in Solutions of Cationic Surfactants Having Ester or Ether Linkages.
    Hirono A; Toyota T; Asakura K; Banno T
    Langmuir; 2018 Jul; 34(26):7821-7826. PubMed ID: 29878786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.
    Banno T; Miura S; Kuroha R; Toyota T
    Langmuir; 2013 Jun; 29(25):7689-96. PubMed ID: 23706080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformable Self-Propelled Micro-Object Comprising Underwater Oil Droplets.
    Banno T; Asami A; Ueno N; Kitahata H; Koyano Y; Asakura K; Toyota T
    Sci Rep; 2016 Aug; 6():31292. PubMed ID: 27503336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-division of self-propelled oil droplets through acetal formation.
    Banno T; Kuroha R; Miura S; Toyota T
    Soft Matter; 2015 Feb; 11(8):1459-63. PubMed ID: 25601308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants.
    Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T
    Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-propelled oil droplets consuming "fuel" surfactant.
    Toyota T; Maru N; Hanczyc MM; Ikegami T; Sugawara T
    J Am Chem Soc; 2009 Apr; 131(14):5012-3. PubMed ID: 19351200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid chemistry at the oil-water interface: self-propelled oil droplets.
    Hanczyc MM; Toyota T; Ikegami T; Packard N; Sugawara T
    J Am Chem Soc; 2007 Aug; 129(30):9386-91. PubMed ID: 17616129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of different self-propulsion types of oil droplets based on electrostatic interaction effects.
    Noguchi M; Yamada M; Sawada H
    RSC Adv; 2022 Jun; 12(29):18354-18362. PubMed ID: 35799924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phototactic behavior of self-propelled micrometer-sized oil droplets in a surfactant solution.
    Kaneko S; Asakura K; Banno T
    Chem Commun (Camb); 2017 Feb; 53(14):2237-2240. PubMed ID: 28144652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant biocompatible and biodegradable PEG-PMCL vesicles and microcapsules by solvent evaporation from double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    J Colloid Interface Sci; 2010 Nov; 351(1):140-50. PubMed ID: 20627256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid ejection of giant Pluronic L121 vesicles from spreading double emulsion droplets.
    Foster T; Dorfman KD; Davis HT
    Langmuir; 2010 Jun; 26(12):9666-72. PubMed ID: 20380397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional and velocity control of active droplets using a rigid-frame.
    Yamada M; Shigemune H; Maeda S; Sawada H
    RSC Adv; 2019 Dec; 9(69):40523-40530. PubMed ID: 35542662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of equilibrium Pickering emulsions--a matter of time scales.
    Kraft DJ; Luigjes B; de Folter JW; Philipse AP; Kegel WK
    J Phys Chem B; 2010 Sep; 114(38):12257-63. PubMed ID: 20809591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quorum Sensing in Emulsion Droplet Swarms Driven by a Surfactant Competition System.
    de Visser PJ; Karagrigoriou D; Nguindjel AC; Korevaar PA
    Adv Sci (Weinh); 2024 Jun; ():e2307919. PubMed ID: 38887869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.