BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27580366)

  • 1. In situ visualization of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy.
    Egawa M; Tokunaga K; Hosoi J; Iwanaga S; Ozeki Y
    J Biomed Opt; 2016 Aug; 21(8):86017. PubMed ID: 27580366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free stimulated Raman scattering microscopy visualizes changes in intracellular morphology during human epidermal keratinocyte differentiation.
    Egawa M; Iwanaga S; Hosoi J; Goto M; Yamanishi H; Miyai M; Katagiri C; Tokunaga K; Asai T; Ozeki Y
    Sci Rep; 2019 Aug; 9(1):12601. PubMed ID: 31467379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Langerhans cells into a pigmented reconstructed human epidermis.
    Régnier M; Staquet MJ; Schmitt D; Schmidt R
    J Invest Dermatol; 1997 Oct; 109(4):510-2. PubMed ID: 9326382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypes and interactions of human melanocytes and keratinocytes in an epidermal reconstruction model.
    Valyi-Nagy IT; Murphy GF; Mancianti ML; Whitaker D; Herlyn M
    Lab Invest; 1990 Mar; 62(3):314-24. PubMed ID: 2179623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone.
    Contard P; Bartel RL; Jacobs L; Perlish JS; MacDonald ED; Handler L; Cone D; Fleischmajer R
    J Invest Dermatol; 1993 Jan; 100(1):35-9. PubMed ID: 8423391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells.
    Régnier M; Patwardhan A; Scheynius A; Schmidt R
    Med Biol Eng Comput; 1998 Nov; 36(6):821-4. PubMed ID: 10367476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidermal growth factor and temperature regulate keratinocyte differentiation.
    Ponec M; Gibbs S; Weerheim A; Kempenaar J; Mulder A; Mommaas AM
    Arch Dermatol Res; 1997 May; 289(6):317-26. PubMed ID: 9209676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging chemistry inside living cells by stimulated Raman scattering microscopy.
    Lee HJ; Cheng JX
    Methods; 2017 Sep; 128():119-128. PubMed ID: 28746829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic expression of epidermal cells in vitro: a review.
    Holbrook KA; Hennings H
    J Invest Dermatol; 1983 Jul; 81(1 Suppl):11s-24s. PubMed ID: 6345688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of chemical disposition in skin by stimulated Raman scattering microscopy.
    Zarmpi P; Tsikritsis D; Vorng JL; Belsey NA; Bunge AL; Woodman TJ; Delgado-Charro MB; Guy RH
    J Control Release; 2024 Apr; 368():797-807. PubMed ID: 38350493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,25-Dihydroxyvitamin D3 stimulates specifically the last steps of epidermal differentiation of cultured human keratinocytes.
    Regnier M; Darmon M
    Differentiation; 1991 Aug; 47(3):173-88. PubMed ID: 1720406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy.
    Drutis DM; Hancewicz TM; Pashkovski E; Feng L; Mihalov D; Holtom G; Ananthapadmanabhan KP; Xie XS; Misra M
    J Biomed Opt; 2014; 19(11):111604. PubMed ID: 24858033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Melanocyte stimulating hormone (MSH) and prostaglandin E2 (PGE2) drive melanosome transfer by promoting filopodia delivery and shedding spheroid granules: Evidences from atomic force microscopy observation.
    Ma HJ; Ma HY; Yang Y; Li PC; Zi SX; Jia CY; Chen R
    J Dermatol Sci; 2014 Dec; 76(3):222-30. PubMed ID: 25445925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences.
    Li Y; Shen B; Li S; Zhao Y; Qu J; Liu L
    Adv Biol (Weinh); 2021 Jan; 5(1):e2000184. PubMed ID: 33724734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-course quantitative mapping of caffeine within the epidermis, using high-contrast pump-probe stimulated Raman scattering microscopy.
    Iguchi R; Nishi Y; Ogihara T; Ito T; Matsuoka F; Misawa K
    Skin Res Technol; 2022 Jan; 28(1):47-53. PubMed ID: 34618986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin morphology of the Clawn miniature pig.
    Yabuki A; Kamimura R; Setoyama K; Tottori J; Taniguchi K; Matsumoto M; Suzuki S
    Exp Anim; 2007 Oct; 56(5):369-73. PubMed ID: 18075197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of epidermal melanocytes and langerhans cells with epidermal cambial cells.
    Yavisheva TM; Shcherbakov SD; Golubeva IS; Savluchinskaya LA; Ryzhova NI
    Bull Exp Biol Med; 2012 Jul; 153(3):367-70. PubMed ID: 22866314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Histophysiology of the epidermis].
    Kuznetsov SL; Goriachkina VL; Ivanova MIu; Tsomartova DA
    Morfologiia; 2012; 142(5):76-85. PubMed ID: 23330444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and differentiation of human epidermal cultures used as auto- and allografts in humans.
    Faure M; Mauduit G; Schmitt D; Kanitakis J; Demidem A; Thivolet J
    Br J Dermatol; 1987 Feb; 116(2):161-70. PubMed ID: 2435313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histology of normal skin.
    Urmacher C
    Am J Surg Pathol; 1990 Jul; 14(7):671-86. PubMed ID: 1694059
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.