BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2758039)

  • 1. A critical appraisal of the association between energy charge and cell damage.
    Kristensen SR
    Biochim Biophys Acta; 1989 Aug; 1012(3):272-8. PubMed ID: 2758039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An increase in the ATP levels occurs in cerebellar granule cells en route to apoptosis in which ATP derives from both oxidative phosphorylation and anaerobic glycolysis.
    Atlante A; Giannattasio S; Bobba A; Gagliardi S; Petragallo V; Calissano P; Marra E; Passarella S
    Biochim Biophys Acta; 2005 Jun; 1708(1):50-62. PubMed ID: 15949983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenylate energy charge of rat and human cultured hepatocytes.
    Matsui Y; Kitade H; Kamiya T; Kanemaki T; Hiramatsu Y; Okumura T; Kamiyama Y
    In Vitro Cell Dev Biol Anim; 1994 Sep; 30A(9):609-14. PubMed ID: 7820312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of various types of metabolic inhibition for cell damage caused by direct membrane damage.
    Kristensen SR
    Mol Cell Biochem; 1994 Nov; 140(1):81-4. PubMed ID: 7877601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of respiratory inhibitors on glycolysis in proximal tubules.
    Dickman KG; Mandel LJ
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1608-15. PubMed ID: 2163215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of the cellular energy level for enzyme release induced by direct membrane damage.
    Kristensen SR
    Enzyme; 1990; 43(1):33-46. PubMed ID: 2113869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma membrane cholesterol: a critical determinant of cellular energetics and tubular resistance to attack.
    Zager RA
    Kidney Int; 2000 Jul; 58(1):193-205. PubMed ID: 10886564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of enzymes from quiescent fibroblasts during ATP depletion.
    Kristensen SR; Hørder M
    Enzyme; 1988; 39(4):205-12. PubMed ID: 3391160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of calcium overload caused by A23187 is more dependent on glycolysis than oxidative phosphorylation.
    Kristensen SR
    Biochim Biophys Acta; 1993 Oct; 1179(1):23-6. PubMed ID: 8399351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of antimycin A and 2-deoxyglucose on energy metabolism in washed human platelets.
    Holmsen H; Robkin L
    Thromb Haemost; 1980 Feb; 42(5):1460-72. PubMed ID: 7368153
    [No Abstract]   [Full Text] [Related]  

  • 11. Modulation of Cellular Levels of Adenosine Phosphates and Creatine Phosphate in Cultured Primary Astrocytes.
    Karger G; Berger J; Dringen R
    Neurochem Res; 2024 Feb; 49(2):402-414. PubMed ID: 37855866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of inhibitors of mitochondrial energy production on hepatic glutathione, UDP-glucuronic acid, and adenosine 3'-phosphate-5'-phosphosulfate concentrations.
    Dills RL; Klaassen CD
    Drug Metab Dispos; 1986; 14(2):190-6. PubMed ID: 2870893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships of adenine nucleotide metabolism to platelet-collagen adhesion.
    Morin RJ; Chen AF
    Thromb Haemost; 1978 Apr; 39(2):366-78. PubMed ID: 580988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of +Gx load on energy metabolism of brain tissue in rats].
    Wu B; Xie BS; You GX; Liu XH; Lu SQ; Huang WF
    Space Med Med Eng (Beijing); 2002 Dec; 15(6):406-9. PubMed ID: 12622074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic ethanol consumption on the energy state and structural stability of periportal and perivenous hepatocytes.
    Ivester P; Lide MJ; Cunningham CC
    Arch Biochem Biophys; 1995 Sep; 322(1):14-21. PubMed ID: 7574668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat.
    Calderwood SK; Bump EA; Stevenson MA; Van Kersen I; Hahn GM
    J Cell Physiol; 1985 Aug; 124(2):261-8. PubMed ID: 3900097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action of metabolic inhibitors on the release of intracellular enzymes from human and rat lymphocytes and human erythrocytes.
    Hallak GJ; Wilkinson JH
    Clin Chim Acta; 1976 Jan; 66(2):251-61. PubMed ID: 173483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.
    Chaube B; Malvi P; Singh SV; Mohammad N; Meena AS; Bhat MK
    Oncotarget; 2015 Nov; 6(35):37281-99. PubMed ID: 26484566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two sites of glucose control of insulin release with distinct dependence on the energy state in pancreatic B-cells.
    Detimary P; Gilon P; Nenquin M; Henquin JC
    Biochem J; 1994 Feb; 297 ( Pt 3)(Pt 3):455-61. PubMed ID: 8110181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable shRNA Silencing of Lactate Dehydrogenase A (LDHA) in Human MDA-MB-231 Breast Cancer Cells Fails to Alter Lactic Acid Production, Glycolytic Activity, ATP or Survival.
    Mack N; Mazzio EA; Bauer D; Flores-Rozas H; Soliman KF
    Anticancer Res; 2017 Mar; 37(3):1205-1212. PubMed ID: 28314283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.