BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27580420)

  • 1. Chaperones in maturation of molybdoenzymes: Why specific is better than general?
    Lemaire ON; Bouillet S; Méjean V; Iobbi-Nivol C; Genest O
    Bioengineered; 2017 Mar; 8(2):133-136. PubMed ID: 27580420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial molybdoenzymes: old enzymes for new purposes.
    Leimkühler S; Iobbi-Nivol C
    FEMS Microbiol Rev; 2016 Jan; 40(1):1-18. PubMed ID: 26468212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes.
    Genest O; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2009 Aug; 297(1):1-9. PubMed ID: 19519768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components.
    Genest O; Neumann M; Seduk F; Stöcklein W; Méjean V; Leimkühler S; Iobbi-Nivol C
    J Biol Chem; 2008 Aug; 283(31):21433-40. PubMed ID: 18522945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperone protection of immature molybdoenzyme during molybdenum cofactor limitation.
    Genest O; Seduk F; Théraulaz L; Méjean V; Iobbi-Nivol C
    FEMS Microbiol Lett; 2006 Dec; 265(1):51-5. PubMed ID: 17107419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biosynthesis of the molybdenum cofactors.
    Mendel RR; Leimkühler S
    J Biol Inorg Chem; 2015 Mar; 20(2):337-47. PubMed ID: 24980677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and stability of the molybdenum cofactor intermediate cyclic pyranopterin monophosphate.
    Santamaria-Araujo JA; Wray V; Schwarz G
    J Biol Inorg Chem; 2012 Jan; 17(1):113-22. PubMed ID: 21877100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical, stabilization and crystallization studies on a molecular chaperone (PaoD) involved in the maturation of molybdoenzymes.
    Otrelo-Cardoso AR; Schwuchow V; Rodrigues D; Cabrita EJ; Leimkühler S; Romão MJ; Santos-Silva T
    PLoS One; 2014; 9(1):e87295. PubMed ID: 24498065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry and biology of the molybdenum cofactors.
    Rajagopalan KV; Johnson JL; Wuebbens MM; Pitterle DM; Hilton JC; Zurick TR; Garrett RM
    Adv Exp Med Biol; 1993; 338():355-62. PubMed ID: 8304138
    [No Abstract]   [Full Text] [Related]  

  • 10. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
    Dong C; Yang J; Reschke S; Leimkühler S; Kirk ML
    Inorg Chem; 2017 Jun; 56(12):6830-6837. PubMed ID: 28590138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
    Niedzialkowska E; Mrugała B; Rugor A; Czub MP; Skotnicka A; Cotelesage JJH; George GN; Szaleniec M; Minor W; Lewiński K
    Protein Expr Purif; 2017 Jun; 134():47-62. PubMed ID: 28343996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of cyclic pyranopterin monophosphate, a biosynthetic intermediate in the molybdenum cofactor pathway.
    Clinch K; Watt DK; Dixon RA; Baars SM; Gainsford GJ; Tiwari A; Schwarz G; Saotome Y; Storek M; Belaidi AA; Santamaria-Araujo JA
    J Med Chem; 2013 Feb; 56(4):1730-8. PubMed ID: 23384403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.
    Pushie MJ; Cotelesage JJ; George GN
    Metallomics; 2014 Jan; 6(1):15-24. PubMed ID: 24068390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional principle of eukaryotic molybdenum insertases.
    Krausze J; Hercher TW; Zwerschke D; Kirk ML; Blankenfeldt W; Mendel RR; Kruse T
    Biochem J; 2018 May; 475(10):1739-1753. PubMed ID: 29717023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molybdenum cofactors, enzymes and pathways.
    Schwarz G; Mendel RR; Ribbe MW
    Nature; 2009 Aug; 460(7257):839-47. PubMed ID: 19675644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
    Williams BR; Fu Y; Yap GP; Burgmayer SJ
    J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors.
    Bevers LE; Hagedoorn PL; Santamaria-Araujo JA; Magalon A; Hagen WR; Schwarz G
    Biochemistry; 2008 Jan; 47(3):949-56. PubMed ID: 18154309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox reactions of the pyranopterin system of the molybdenum cofactor.
    Nieter Burgmayer SJ; Pearsall DL; Blaney SM; Moore EM; Sauk-Schubert C
    J Biol Inorg Chem; 2004 Jan; 9(1):59-66. PubMed ID: 14628171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.