BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27580588)

  • 1. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion.
    Bieber FR; Buckleton JS; Budowle B; Butler JM; Coble MD
    BMC Genet; 2016 Aug; 17(1):125. PubMed ID: 27580588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex DNA mixture analysis in a forensic context: evaluating the probative value using a likelihood ratio model.
    Haned H; Benschop CCG; Gill PD; Sijen T
    Forensic Sci Int Genet; 2015 May; 16():17-25. PubMed ID: 25485478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion probability with dropout: an operational formula.
    Milot E; Courteau J; Crispino F; Mailly F
    Forensic Sci Int Genet; 2015 May; 16():71-76. PubMed ID: 25559642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the performance of different models for the interpretation of low level mixed DNA profiles.
    Bille TW; Weitz SM; Coble MD; Buckleton J; Bright JA
    Electrophoresis; 2014 Nov; 35(21-22):3125-33. PubMed ID: 25168355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing between donors and their relatives in complex DNA mixtures with binary models.
    Slooten K
    Forensic Sci Int Genet; 2016 Mar; 21():95-109. PubMed ID: 26745184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TrueAllele casework on Virginia DNA mixture evidence: computer and manual interpretation in 72 reported criminal cases.
    Perlin MW; Dormer K; Hornyak J; Schiermeier-Wood L; Greenspoon S
    PLoS One; 2014; 9(3):e92837. PubMed ID: 24667531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of random match probability calculations to mixed STR profiles.
    Bille T; Bright JA; Buckleton J
    J Forensic Sci; 2013 Mar; 58(2):474-85. PubMed ID: 23425220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NIST interlaboratory studies involving DNA mixtures (MIX13): A modern analysis.
    Buckleton JS; Bright JA; Cheng K; Budowle B; Coble MD
    Forensic Sci Int Genet; 2018 Nov; 37():172-179. PubMed ID: 30176439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model.
    Manabe S; Morimoto C; Hamano Y; Fujimoto S; Tamaki K
    PLoS One; 2017; 12(11):e0188183. PubMed ID: 29149210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A large-scale validation of NOCIt's a posteriori probability of the number of contributors and its integration into forensic interpretation pipelines.
    Grgicak CM; Karkar S; Yearwood-Garcia X; Alfonse LE; Duffy KR; Lun DS
    Forensic Sci Int Genet; 2020 Jul; 47():102296. PubMed ID: 32339916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework.
    Budowle B; Onorato AJ; Callaghan TF; Della Manna A; Gross AM; Guerrieri RA; Luttman JC; McClure DL
    J Forensic Sci; 2009 Jul; 54(4):810-21. PubMed ID: 19368620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A statistical framework for the interpretation of mtDNA mixtures: forensic and medical applications.
    Egeland T; Salas A
    PLoS One; 2011; 6(10):e26723. PubMed ID: 22053205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the probability of allelic drop-out of STR alleles in forensic genetics.
    Tvedebrink T; Eriksen PS; Mogensen HS; Morling N
    Forensic Sci Int Genet; 2009 Sep; 3(4):222-6. PubMed ID: 19647706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision DNA Mixture Interpretation with Single-Cell Profiling.
    Ge J; King JL; Smuts A; Budowle B
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.
    Bleka Ø; Storvik G; Gill P
    Forensic Sci Int Genet; 2016 Mar; 21():35-44. PubMed ID: 26720812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters.
    Puch-Solis R; Rodgers L; Mazumder A; Pope S; Evett I; Curran J; Balding D
    Forensic Sci Int Genet; 2013 Sep; 7(5):555-63. PubMed ID: 23948327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation and validation of an improved allele specific stutter filtering method for electropherogram interpretation.
    Kalafut T; Schuerman C; Sutton J; Faris T; Armogida L; Bright JA; Buckleton J; Taylor D
    Forensic Sci Int Genet; 2018 Jul; 35():50-56. PubMed ID: 29660688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inclusion probability for DNA mixtures is a subjective one-sided match statistic unrelated to identification information.
    Perlin MW
    J Pathol Inform; 2015; 6():59. PubMed ID: 26605124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An assessment of the information content of likelihood ratios derived from complex mixtures.
    Marsden CD; Rudin N; Inman K; Lohmueller KE
    Forensic Sci Int Genet; 2016 May; 22():64-72. PubMed ID: 26851613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correcting forensic DNA errors.
    Hampikian G
    Forensic Sci Int Genet; 2019 Jul; 41():32-33. PubMed ID: 30947116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.