These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 27581361)
1. Electromagnetic Attenuation Characteristics of Microbial Materials in the Infrared Band. Wang P; Liu H; Zhao Y; Gu Y; Chen W; Wang L; Li L; Zhao X; Lei W; Hu Y; Zheng Z Appl Spectrosc; 2016 Sep; 70(9):1456-63. PubMed ID: 27581361 [TBL] [Abstract][Full Text] [Related]
2. [Optical properties research of Bacillus subtilis spores by Fourier transform infrared spectroscopy]. Feng MC; Xu L; Gao MG; Jiao Y; Wei XL; Jin L; Cheng SY; Li XX; Feng SX Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3193-6. PubMed ID: 23427533 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 micrometers. Gu Y; Hu Y; Zhao X; Chen X; Wang P; Zheng Z Opt Express; 2018 Jun; 26(12):15842-15850. PubMed ID: 30114839 [TBL] [Abstract][Full Text] [Related]
4. Infrared Extinction Performance of Randomly Oriented Microbial-Clustered Agglomerate Materials. Li L; Hu Y; Gu Y; Zhao X; Xu S; Yu L; Zheng ZM; Wang P Appl Spectrosc; 2017 Nov; 71(11):2555-2562. PubMed ID: 28933200 [TBL] [Abstract][Full Text] [Related]
5. Sampling and quantitative analysis of clean B. subtilis spores at sub-monolayer coverage by reflectance fourier transform infrared microscopy using gold-coated filter substrates. Brooke H; Perkins DL; Setlow B; Setlow P; Bronk BV; Myrick ML Appl Spectrosc; 2008 Aug; 62(8):881-8. PubMed ID: 18702861 [TBL] [Abstract][Full Text] [Related]
6. Identifications of household's spores using mid infrared spectroscopy. Dixit V; Cho BK; Obendorf K; Tewari J Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():490-6. PubMed ID: 24434199 [TBL] [Abstract][Full Text] [Related]
7. Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores. Perkins DL; Lovell CR; Bronk BV; Setlow B; Setlow P; Myrick ML Appl Spectrosc; 2005 Jul; 59(7):893-6. PubMed ID: 16053560 [TBL] [Abstract][Full Text] [Related]
8. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively. Nakanishi K; Kogure A; Fujii T; Kokawa R; Deuchi K; Kuwana R; Takamatsu H J Nanobiotechnology; 2013 Oct; 11():33. PubMed ID: 24107328 [TBL] [Abstract][Full Text] [Related]
9. In situ determination of refractive index and size of Bacillus spores by light transmission. Katz A; Alimova A; Xu M; Gottlieb P; Rudolph E; Steiner JC; Alfano RR Opt Lett; 2005 Mar; 30(6):589-91. PubMed ID: 15791985 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of Bioactive Protein A from Staphylococcus aureus (SpA) on the Surface of Bacillus subtilis Spores. Ghaedmohammadi S; Rigi G; Zadmard R; Ricca E; Ahmadian G Mol Biotechnol; 2015 Aug; 57(8):756-66. PubMed ID: 25840905 [TBL] [Abstract][Full Text] [Related]
11. Detection of Bacillus globigii spores using a Fourier transform infrared-attenuated total reflection method. Li H; Tripp CP Appl Spectrosc; 2008 Sep; 62(9):963-7. PubMed ID: 18801234 [TBL] [Abstract][Full Text] [Related]
12. [Community diversity of entomogenous fungi in Dabie Mountains in Anhui]. Wang S; Liu J; Wang C; Fan M; Li Z Ying Yong Sheng Tai Xue Bao; 2004 May; 15(5):883-7. PubMed ID: 15320416 [TBL] [Abstract][Full Text] [Related]
13. Identification of bacterial spores using statistical analysis of Fourier transform infrared photoacoustic spectroscopy data. Thompson SE; Foster NS; Johnson TJ; Valentine NB; Amonette JE Appl Spectrosc; 2003 Aug; 57(8):893-9. PubMed ID: 14661830 [TBL] [Abstract][Full Text] [Related]
15. Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm(-1). Max JJ; Chapados C J Chem Phys; 2009 Nov; 131(18):184505. PubMed ID: 19916610 [TBL] [Abstract][Full Text] [Related]
16. Improved dispersion of bacterial endospores for quantitative infrared sampling on gold coated porous alumina membranes. Schiza MV; Perkins DL; Priore RJ; Setlow B; Setlow P; Bronk BV; Wong DM; Myrick ML Appl Spectrosc; 2005 Aug; 59(8):1068-74. PubMed ID: 16105218 [TBL] [Abstract][Full Text] [Related]
17. Measured infrared optical cross sections for a variety of chemical and biological aerosol simulants. Gurton KP; Ligon D; Dahmani R Appl Opt; 2004 Aug; 43(23):4564-70. PubMed ID: 15376433 [TBL] [Abstract][Full Text] [Related]
18. A sensitive method for examining whole-cell biochemical composition in single cells of filamentous fungi using synchrotron FTIR spectromicroscopy. Jilkine K; Gough KM; Julian R; Kaminskyj SG J Inorg Biochem; 2008 Mar; 102(3):540-6. PubMed ID: 18158185 [TBL] [Abstract][Full Text] [Related]
19. Detection of spores using electric field-assisted FTIR-ATR. Li H; Doucette LD; Bousfield D; Tripp CP Anal Chem; 2010 Jun; 82(12):5053-9. PubMed ID: 20481441 [TBL] [Abstract][Full Text] [Related]
20. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics. Gurton KP; Dahmani R; Ligon D; Bronk BV Appl Opt; 2005 Jul; 44(19):4096-101. PubMed ID: 16004057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]