These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor. Zhao D; Wang T; Kuhlmann J; Dong Z; Chen S; Joshi M; Salunke P; Shanov VN; Hong D; Kumta PN; Heineman WR Acta Biomater; 2016 May; 36():361-8. PubMed ID: 27045693 [TBL] [Abstract][Full Text] [Related]
3. In vivo characterization of magnesium alloy biodegradation using electrochemical H Zhao D; Wang T; Nahan K; Guo X; Zhang Z; Dong Z; Chen S; Chou DT; Hong D; Kumta PN; Heineman WR Acta Biomater; 2017 Mar; 50():556-565. PubMed ID: 28069511 [TBL] [Abstract][Full Text] [Related]
4. In vivo quantification of hydrogen gas concentration in bone marrow surrounding magnesium fracture fixation hardware using an electrochemical hydrogen gas sensor. Zhao D; Brown A; Wang T; Yoshizawa S; Sfeir C; Heineman WR Acta Biomater; 2018 Jun; 73():559-566. PubMed ID: 29684620 [TBL] [Abstract][Full Text] [Related]
5. A Visual Hydrogen Sensor Prototype for Monitoring Magnesium Implant Biodegradation. Smith ME; Rose DP; Cui X; Stastny AL; Zhang P; Heineman WR Anal Chem; 2021 Aug; 93(30):10487-10494. PubMed ID: 34279086 [TBL] [Abstract][Full Text] [Related]
6. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Kuhlmann J; Bartsch I; Willbold E; Schuchardt S; Holz O; Hort N; Höche D; Heineman WR; Witte F Acta Biomater; 2013 Nov; 9(10):8714-21. PubMed ID: 23069319 [TBL] [Abstract][Full Text] [Related]
7. In vitro calibration and in vivo validation of phenomenological corrosion models for resorbable magnesium-based orthopaedic implants. Joshi A; Haththotuwa N; Richard JS; Laven R; Dias GJ; Staiger MP Acta Biomater; 2024 May; 180():171-182. PubMed ID: 38570108 [TBL] [Abstract][Full Text] [Related]
8. Security assessment of magnesium alloys used as biodegradable implant material. Sun X; Cao ZY; Liu JG; Feng C Biomed Mater Eng; 2015; 26 Suppl 1():S119-27. PubMed ID: 26405877 [TBL] [Abstract][Full Text] [Related]
9. Recent advances on the development of magnesium alloys for biodegradable implants. Chen Y; Xu Z; Smith C; Sankar J Acta Biomater; 2014 Nov; 10(11):4561-4573. PubMed ID: 25034646 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials. Ur Rahman Z; Pompa L; Haider W J Mater Sci Mater Med; 2015 Aug; 26(8):217. PubMed ID: 26216551 [TBL] [Abstract][Full Text] [Related]
11. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Doepke A; Kuhlmann J; Guo X; Voorhees RT; Heineman WR Acta Biomater; 2013 Nov; 9(11):9211-9. PubMed ID: 23871945 [TBL] [Abstract][Full Text] [Related]
12. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application. Zhao S; Chen Y; Liu B; Chen M; Mao J; He H; Zhao Y; Huang N; Wan G J Biomed Mater Res A; 2015 May; 103(5):1640-52. PubMed ID: 25125028 [TBL] [Abstract][Full Text] [Related]
13. Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg-5Zn-0.3Ca alloys. Hofstetter J; Martinelli E; Pogatscher S; Schmutz P; Povoden-Karadeniz E; Weinberg AM; Uggowitzer PJ; Löffler JF Acta Biomater; 2015 Sep; 23():347-353. PubMed ID: 25983315 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo corrosion measurements of magnesium alloys. Witte F; Fischer J; Nellesen J; Crostack HA; Kaese V; Pisch A; Beckmann F; Windhagen H Biomaterials; 2006 Mar; 27(7):1013-8. PubMed ID: 16122786 [TBL] [Abstract][Full Text] [Related]
15. Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50. Amerstorfer F; Fischerauer SF; Fischer L; Eichler J; Draxler J; Zitek A; Meischel M; Martinelli E; Kraus T; Hann S; Stanzl-Tschegg SE; Uggowitzer PJ; Löffler JF; Weinberg AM; Prohaska T Acta Biomater; 2016 Sep; 42():440-450. PubMed ID: 27343708 [TBL] [Abstract][Full Text] [Related]
16. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating. Rojaee R; Fathi M; Raeissi K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282 [TBL] [Abstract][Full Text] [Related]
17. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Willbold E; Gu X; Albert D; Kalla K; Bobe K; Brauneis M; Janning C; Nellesen J; Czayka W; Tillmann W; Zheng Y; Witte F Acta Biomater; 2015 Jan; 11():554-62. PubMed ID: 25278442 [TBL] [Abstract][Full Text] [Related]
18. Fluorescent Tong X; Bian D; Hao L; Wang L; Ma L; Gao M; Wang Y ACS Appl Bio Mater; 2022 May; 5(5):2340-2346. PubMed ID: 35503734 [TBL] [Abstract][Full Text] [Related]
19. The role of surface oxidation on the degradation behavior of biodegradable Mg-RE (Gd, Y, Sc) alloys for resorbable implants. Brar HS; Berglund IS; Allen JB; Manuel MV Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():407-17. PubMed ID: 24857509 [TBL] [Abstract][Full Text] [Related]
20. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]