These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27581440)
21. Biosynthesis and pathway engineering of antifungal polyene macrolides in actinomycetes. Kong D; Lee MJ; Lin S; Kim ES J Ind Microbiol Biotechnol; 2013 Jun; 40(6):529-43. PubMed ID: 23515854 [TBL] [Abstract][Full Text] [Related]
22. Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Fujii Y; Kabumoto H; Nishimura K; Fujii T; Yanai S; Takeda K; Tamura N; Arisawa A; Tamura T Biochem Biophys Res Commun; 2009 Jul; 385(2):170-5. PubMed ID: 19450562 [TBL] [Abstract][Full Text] [Related]
23. Characterization of a novel cytochrome P450 from Amycolatopsis sp. CGMCC1149 for hydroxylation of lovastatin. Zong H; Zhuge B; Lu X; Huo X; Fang H; Song J; Sun J Biotechnol Appl Biochem; 2015; 62(1):9-16. PubMed ID: 24848135 [TBL] [Abstract][Full Text] [Related]
24. Identification of a vitamin D3-specific hydroxylase genes through actinomycetes genome mining. Ban JG; Kim HB; Lee MJ; Anbu P; Kim ES J Ind Microbiol Biotechnol; 2014 Feb; 41(2):265-73. PubMed ID: 24113891 [TBL] [Abstract][Full Text] [Related]
25. Molecular characterization of the hydroxylase HmtN at 1.3 Å resolution. Zhang H; Chen J; Zhang H Biochem Biophys Res Commun; 2019 Aug; 516(3):1033-1038. PubMed ID: 28687492 [TBL] [Abstract][Full Text] [Related]
26. New insights into polyene macrolide biosynthesis in Couchioplanes caeruleus. Sheehan J; Murphy CD; Caffrey P Mol Biosyst; 2017 May; 13(5):866-873. PubMed ID: 28383583 [TBL] [Abstract][Full Text] [Related]
27. Molecular Dynamics and QM/MM Calculations Predict the Substrate-Induced Gating of Cytochrome P450 BM3 and the Regio- and Stereoselectivity of Fatty Acid Hydroxylation. Dubey KD; Wang B; Shaik S J Am Chem Soc; 2016 Jan; 138(3):837-45. PubMed ID: 26716578 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts de-epoxypimaricin into pimaricin. Mendes MV; Antón N; Martín JF; Aparicio JF Biochem J; 2005 Feb; 386(Pt 1):57-62. PubMed ID: 15228385 [TBL] [Abstract][Full Text] [Related]
29. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. Sakaki T; Sugimoto H; Hayashi K; Yasuda K; Munetsuna E; Kamakura M; Ikushiro S; Shiro Y Biochim Biophys Acta; 2011 Jan; 1814(1):249-56. PubMed ID: 20654743 [TBL] [Abstract][Full Text] [Related]
30. Probing the structure-function relationship of polyene macrolides: engineered biosynthesis of soluble nystatin analogues. Borgos SE; Tsan P; Sletta H; Ellingsen TE; Lancelin JM; Zotchev SB J Med Chem; 2006 Apr; 49(8):2431-9. PubMed ID: 16610786 [TBL] [Abstract][Full Text] [Related]
31. Biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei. Fjaervik E; Zotchev SB Appl Microbiol Biotechnol; 2005 Jun; 67(4):436-43. PubMed ID: 15700127 [TBL] [Abstract][Full Text] [Related]
32. The pcsA gene from Streptomyces diastaticus var. 108 encodes a polyene carboxamide synthase with broad substrate specificity for polyene amides biosynthesis. Seco EM; Miranzo D; Nieto C; Malpartida F Appl Microbiol Biotechnol; 2010 Feb; 85(6):1797-807. PubMed ID: 19707755 [TBL] [Abstract][Full Text] [Related]
33. Polyene macrolide biosynthesis in streptomycetes and related bacteria: recent advances from genome sequencing and experimental studies. Caffrey P; De Poire E; Sheehan J; Sweeney P Appl Microbiol Biotechnol; 2016 May; 100(9):3893-908. PubMed ID: 27023916 [TBL] [Abstract][Full Text] [Related]
34. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. Murataliev MB; Trinh LN; Moser LV; Bates RB; Feyereisen R; Walker FA Biochemistry; 2004 Feb; 43(7):1771-80. PubMed ID: 14967018 [TBL] [Abstract][Full Text] [Related]
35. A natural heme-signature variant of CYP267A1 from Sorangium cellulosum So ce56 executes diverse ω-hydroxylation. Khatri Y; Hannemann F; Girhard M; Kappl R; Hutter M; Urlacher VB; Bernhardt R FEBS J; 2015 Jan; 282(1):74-88. PubMed ID: 25302415 [TBL] [Abstract][Full Text] [Related]
36. Site-directed mutagenesis of putative substrate recognition sites in cytochrome P450 2B11: importance of amino acid residues 114, 290, and 363 for substrate specificity. Hasler JA; Harlow GR; Szklarz GD; John GH; Kedzie KM; Burnett VL; He YA; Kaminsky LS; Halpert JR Mol Pharmacol; 1994 Aug; 46(2):338-45. PubMed ID: 8078495 [TBL] [Abstract][Full Text] [Related]
37. Expanding the substrate scope and reactivity of cytochrome P450 OleT. Hsieh CH; Makris TM Biochem Biophys Res Commun; 2016 Aug; 476(4):462-466. PubMed ID: 27246733 [TBL] [Abstract][Full Text] [Related]
38. Structural characterization of CYP260A1 from Sorangium cellulosum to investigate the 1α-hydroxylation of a mineralocorticoid. Khatri Y; Carius Y; Ringle M; Lancaster CR; Bernhardt R FEBS Lett; 2016 Dec; 590(24):4638-4648. PubMed ID: 27878817 [TBL] [Abstract][Full Text] [Related]
39. Effect of glucose limitation and specific mutations in the module 5 enoyl reductase domains in the nystatin and amphotericin polyketide synthases on polyene macrolide biosynthesis. Borgos SE; Sletta H; Fjaervik E; Brautaset T; Ellingsen TE; Gulliksen OM; Zotchev SB Arch Microbiol; 2006 Apr; 185(3):165-71. PubMed ID: 16416127 [TBL] [Abstract][Full Text] [Related]
40. Cytochrome P450 Hydroxylase TnmL Catalyzing Sequential Hydroxylation with an Additional Proofreading Activity in Tiancimycin Biosynthesis. Annaval T; Teijaro CN; Adhikari A; Yan X; Chen JJ; Crnovcic I; Yang D; Shen B ACS Chem Biol; 2021 Jul; 16(7):1172-1178. PubMed ID: 34138533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]