BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27581442)

  • 1. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.
    Bansal R; Dhami NK; Mukherjee A; Reddy MS
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1497-1505. PubMed ID: 27581442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens.
    Rangamaran VR; Shanmugam VK
    Mar Biotechnol (NY); 2019 Apr; 21(2):161-170. PubMed ID: 30535928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete.
    Vashisht R; Attri S; Sharma D; Shukla A; Goel G
    Microbiol Res; 2018 Mar; 207():226-231. PubMed ID: 29458858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
    Alonso MJC; Ortiz CEL; Perez SOG; Narayanasamy R; Fajardo San Miguel GDJ; Hernández HH; Balagurusamy N
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21451-21458. PubMed ID: 28593545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.
    Dhami NK; Reddy MS; Mukherjee A
    J Microbiol Biotechnol; 2013 May; 23(5):707-14. PubMed ID: 23648862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcite-forming bacteria for compressive strength improvement in mortar.
    Park SJ; Park YM; Chun WY; Kim WJ; Ghim SY
    J Microbiol Biotechnol; 2010 Apr; 20(4):782-8. PubMed ID: 20467254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.
    Dhami NK; Reddy MS; Mukherjee A
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2397-406. PubMed ID: 23793943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and identification of bacteria to improve the strength of concrete.
    Krishnapriya S; Venkatesh Babu DL; G PA
    Microbiol Res; 2015 May; 174():48-55. PubMed ID: 25946328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM.
    Ghezelbash GR; Haddadi M
    World J Microbiol Biotechnol; 2018 Nov; 34(12):174. PubMed ID: 30446832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.
    Heidari Nonakaran S; Pazhouhandeh M; Keyvani A; Abdollahipour FZ; Shirzad A
    World J Microbiol Biotechnol; 2015 Dec; 31(12):1993-2001. PubMed ID: 26386580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.
    Jeong JH; Jo YS; Park CS; Kang CH; So JS
    J Microbiol Biotechnol; 2017 Jul; 27(7):1331-1335. PubMed ID: 28478659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation.
    Achal V; Pan X
    Curr Microbiol; 2011 Mar; 62(3):894-902. PubMed ID: 21046391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization.
    Dhami NK; Reddy MS; Mukherjee A
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2552-61. PubMed ID: 24407944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of calcifying bacteria on permeation properties of concrete structures.
    Achal V; Mukherjee A; Reddy MS
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1229-34. PubMed ID: 21104104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Biomineralization of
    Han PP; Geng WJ; Li MN; Jia SR; Yin JL; Xue RZ
    J Microbiol Biotechnol; 2021 Sep; 31(9):1311-1322. PubMed ID: 34319256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of exopolymeric materials on bacterially induced mineralization of carbonates.
    Bains A; Dhami NK; Mukherjee A; Reddy MS
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3531-41. PubMed ID: 25652829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-mediated biocalcification by a novel alkaliphilic Bacillus psychrodurans LC40 and its eco-friendly application as a biosealant for crack healing.
    Park M; Park S; Yoo JY; Kim Y; Lee KM; Hwang DY; Son HJ
    Sci Total Environ; 2022 Jan; 802():149841. PubMed ID: 34455282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.
    Yoosathaporn S; Tiangburanatham P; Bovonsombut S; Chaipanich A; Pathom-Aree W
    Microbiol Res; 2016; 186-187():132-8. PubMed ID: 27242150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete.
    Kim HJ; Eom HJ; Park C; Jung J; Shin B; Kim W; Chung N; Choi IG; Park W
    J Microbiol Biotechnol; 2016 Mar; 26(3):540-8. PubMed ID: 26699752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocalcification by Bacillus pasteurii urease: a novel application.
    Sarda D; Choonia HS; Sarode DD; Lele SS
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1111-5. PubMed ID: 19415357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.