These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2758158)

  • 1. Cartilage resorption and endochondral bone formation during the development of long bones in chick embryos.
    Roach HI; Shearer JR
    Bone Miner; 1989 Jul; 6(3):289-309. PubMed ID: 2758158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix.
    Roach HI
    J Bone Miner Res; 1997 May; 12(5):795-805. PubMed ID: 9144346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage.
    von der Mark K; von der Mark H
    J Bone Joint Surg Br; 1977 Nov; 59-B(4):458-64. PubMed ID: 72756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana.
    Felisbino SL; Carvalho HF
    Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of matrix metalloproteinases toward Meckel's cartilage resorption in mice: immunohistochemical studies, including comparisons with developing endochondral bones.
    Sakakura Y; Hosokawa Y; Tsuruga E; Irie K; Nakamura M; Yajima T
    Cell Tissue Res; 2007 Apr; 328(1):137-51. PubMed ID: 17136358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of matrix acid and alkaline phosphatases with mineralization of cartilage and endochondral bone.
    Roach HI
    Histochem J; 1999 Jan; 31(1):53-61. PubMed ID: 10405823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endochondral resorption of chick sterna in culture.
    Gibson GJ; Lin DL; Schaffler MB; Kimura JH
    J Orthop Res; 1995 Jul; 13(4):542-52. PubMed ID: 7674070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular organization of fibroblastic cells and macrophages at regions of uncalcified cartilage resorption in the embryonic chick femur as revealed by alkaline and acid phosphatase histochemistry.
    Sorrell JM; Weiss L
    Anat Rec; 1982 Apr; 202(4):491-9. PubMed ID: 7072991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term organ culture of embryonic chick femora: a system for investigating bone and cartilage formation at an intermediate level of organization.
    Roach HI
    J Bone Miner Res; 1990 Jan; 5(1):85-100. PubMed ID: 2309583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology of bone development and bone remodeling in embryonic chick limbs.
    Pechak DG; Kujawa MJ; Caplan AI
    Bone; 1986; 7(6):459-72. PubMed ID: 3801237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of tartrate-resistant acid phosphatase (TRAP), membrane type-1 matrix metalloproteinases (MT1-MMP) and macrophages during early endochondral bone formation.
    Blumer MJ; Longato S; Fritsch H
    J Anat; 2008 Oct; 213(4):431-41. PubMed ID: 18643874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cartilage canals in endochondral and perichondral bone formation: are there similarities between these two processes?
    Blumer MJ; Longato S; Richter E; PĂ©rez MT; Konakci KZ; Fritsch H
    J Anat; 2005 Apr; 206(4):359-72. PubMed ID: 15817104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-differentiation of hypertrophic chondrocytes into cells capable of producing a mineralized bone matrix.
    Roach HI
    Bone Miner; 1992 Oct; 19(1):1-20. PubMed ID: 1422302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human osteoclasts, not osteoblasts, deposit osteopontin onto resorption surfaces: an in vitro and ex vivo study of remodeling bone.
    Dodds RA; Connor JR; James IE; Rykaczewski EL; Appelbaum E; Dul E; Gowen M
    J Bone Miner Res; 1995 Nov; 10(11):1666-80. PubMed ID: 8592943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondrocyte apoptosis in endochondral ossification of chick sterna.
    Gibson GJ; Kohler WJ; Schaffler MB
    Dev Dyn; 1995 Aug; 203(4):468-76. PubMed ID: 7496038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrocytic ephrin B2 promotes cartilage destruction by osteoclasts in endochondral ossification.
    Tonna S; Poulton IJ; Taykar F; Ho PW; Tonkin B; Crimeen-Irwin B; Tatarczuch L; McGregor NE; Mackie EJ; Martin TJ; Sims NA
    Development; 2016 Feb; 143(4):648-57. PubMed ID: 26755702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and chronological localization of septoclasts in the mouse Meckel's cartilage.
    Sakashita H; Bando Y; Nagasaka A; Sakiyama K; Onozawa G; Taira F; Ogasawara Y; Owada Y; Sakashita H; Amano O
    Histochem Cell Biol; 2022 May; 157(5):569-580. PubMed ID: 35195769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage canals in the chicken embryo are involved in the process of endochondral bone formation within the epiphyseal growth plate.
    Blumer MJ; Longato S; Fritsch H
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jul; 279(1):692-700. PubMed ID: 15224411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New observations on the development of the embryonic chick femur: cartilage calcification before resorption.
    Laborde C
    Bone Miner; 1988 Jun; 4(2):147-56. PubMed ID: 3191277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoclast differentiation at growth plate cartilage-trabecular bone junction in newborn rat femur.
    Sawae Y; Sahara T; Sasaki T
    J Electron Microsc (Tokyo); 2003; 52(6):493-502. PubMed ID: 14756237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.