BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27582081)

  • 1. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.
    Okada H; Ebhardt HA; Vonesch SC; Aebersold R; Hafen E
    Nat Commun; 2016 Sep; 7():12649. PubMed ID: 27582081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.
    Schertel C; Albarca M; Rockel-Bauer C; Kelley NW; Bischof J; Hens K; van Nimwegen E; Basler K; Deplancke B
    Genome Res; 2015 Apr; 25(4):514-23. PubMed ID: 25568052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anchor negatively regulates BMP signalling to control Drosophila wing development.
    Wang XC; Liu Z; Jin LH
    Eur J Cell Biol; 2018 May; 97(4):308-317. PubMed ID: 29735293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organized patterning of cell morphology via mechanosensitive feedback.
    Dye NA; Popović M; Iyer KV; Fuhrmann JF; Piscitello-Gómez R; Eaton S; Jülicher F
    Elife; 2021 Mar; 10():. PubMed ID: 33769281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The wing imaginal disc.
    Tripathi BK; Irvine KD
    Genetics; 2022 Apr; 220(4):. PubMed ID: 35243513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gliolectin positively regulates Notch signalling during wing-vein specification in Drosophila.
    Prasad N; Shashidhara LS
    Int J Dev Biol; 2015; 59(4-6):187-94. PubMed ID: 26505251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards long term cultivation of Drosophila wing imaginal discs in vitro.
    Handke B; Szabad J; Lidsky PV; Hafen E; Lehner CF
    PLoS One; 2014; 9(9):e107333. PubMed ID: 25203426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential roles for stat92E in expanding and patterning the proximodistal axis of the Drosophila wing imaginal disc.
    Hatini V; Kula-Eversole E; Nusinow D; Del Signore SJ
    Dev Biol; 2013 Jun; 378(1):38-50. PubMed ID: 23499656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs.
    Jones CI; Grima DP; Waldron JA; Jones S; Parker HN; Newbury SF
    RNA Biol; 2013 Aug; 10(8):1345-55. PubMed ID: 23792537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New components of Drosophila leg development identified through genome wide association studies.
    Grubbs N; Leach M; Su X; Petrisko T; Rosario JB; Mahaffey JW
    PLoS One; 2013; 8(4):e60261. PubMed ID: 23560084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of weak genetic perturbations on the transcriptome of the wing imaginal disc and its association with wing shape in Drosophila melanogaster.
    Dworkin I; Anderson JA; Idaghdour Y; Parker EK; Stone EA; Gibson G
    Genetics; 2011 Apr; 187(4):1171-84. PubMed ID: 21288875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs.
    Yamazaki Y; Palmer L; Alexandre C; Kakugawa S; Beckett K; Gaugue I; Palmer RH; Vincent JP
    Nat Cell Biol; 2016 Apr; 18(4):451-7. PubMed ID: 26974662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of dominant vestigial alleles upon vestigial-mediated wing patterning during development of Drosophila melanogaster.
    Simmonds A; Hughes S; Tse J; Cocquyt S; Bell J
    Mech Dev; 1997 Sep; 67(1):17-33. PubMed ID: 9347912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA miR-7 contributes to the control of Drosophila wing growth.
    Aparicio R; Simoes Da Silva CJ; Busturia A
    Dev Dyn; 2015 Jan; 244(1):21-30. PubMed ID: 25302682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMP morphogen gradients in flies.
    Matsuda S; Harmansa S; Affolter M
    Cytokine Growth Factor Rev; 2016 Feb; 27():119-27. PubMed ID: 26684043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of the Thickveins (Tkv) gradient in Drosophila wing discs: A theoretical study.
    Chen Z
    J Theor Biol; 2019 Aug; 474():25-41. PubMed ID: 30998935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordination of wing and whole-body development at developmental milestones ensures robustness against environmental and physiological perturbations.
    Oliveira MM; Shingleton AW; Mirth CK
    PLoS Genet; 2014 Jun; 10(6):e1004408. PubMed ID: 24945255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting Drosophila melanogaster Wing Imaginal Disc Eversion to Screen for New EMT Effectors.
    Golenkina S; Manhire-Heath R; Murray MJ
    Methods Mol Biol; 2021; 2179():115-134. PubMed ID: 32939717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements.
    Peterson AJ; O'Connor MB
    Development; 2013 Feb; 140(3):649-59. PubMed ID: 23293296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative response of different regions of Drosophila imaginal discs.
    Martín R; Morata G
    Int J Dev Biol; 2018; 62(6-7-8):507-512. PubMed ID: 29938762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.