BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 27582314)

  • 1. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf.
    Czedik-Eysenberg A; Arrivault S; Lohse MA; Feil R; Krohn N; Encke B; Nunes-Nesi A; Fernie AR; Lunn JE; Sulpice R; Stitt M
    Plant Physiol; 2016 Oct; 172(2):943-967. PubMed ID: 27582314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose.
    Figueroa CM; Lunn JE
    Plant Physiol; 2016 Sep; 172(1):7-27. PubMed ID: 27482078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness.
    Henry C; Bledsoe SW; Siekman A; Kollman A; Waters BM; Feil R; Stitt M; Lagrimini LM
    J Exp Bot; 2014 Nov; 65(20):5959-73. PubMed ID: 25271261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Leaf to Kernel: Trehalose-6-Phosphate Signaling Moves Carbon in the Field.
    Smeekens S
    Plant Physiol; 2015 Oct; 169(2):912-3. PubMed ID: 26417053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition.
    Coneva V; Guevara D; Rothstein SJ; Colasanti J
    J Exp Bot; 2012 Sep; 63(14):5079-92. PubMed ID: 22791826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose 6-Phosphate Regulates Photosynthesis and Assimilate Partitioning in Reproductive Tissue.
    Oszvald M; Primavesi LF; Griffiths CA; Cohn J; Basu SS; Nuccio ML; Paul MJ
    Plant Physiol; 2018 Apr; 176(4):2623-2638. PubMed ID: 29437777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313.
    Aydinoglu F; Lucas SJ
    Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Role for Trehalose Metabolism in Salt-Stressed Maize.
    Henry C; Bledsoe SW; Griffiths CA; Kollman A; Paul MJ; Sakr S; Lagrimini LM
    Plant Physiol; 2015 Oct; 169(2):1072-89. PubMed ID: 26269545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes.
    Li Y; Wang W; Feng Y; Tu M; Wittich PE; Bate NJ; Messing J
    Plant Biotechnol J; 2019 Feb; 17(2):472-487. PubMed ID: 30051585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diel patterns of leaf C export and of main shoot growth for Flaveria linearis with altered leaf sucrose-starch partitioning.
    Leonardos ED; Micallef BJ; Micallef MC; Grodzinski B
    J Exp Bot; 2006; 57(4):801-14. PubMed ID: 16449378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of mRNA and protein abundance in the developing maize leaf.
    Ponnala L; Wang Y; Sun Q; van Wijk KJ
    Plant J; 2014 May; 78(3):424-40. PubMed ID: 24547885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.
    Garapati P; Feil R; Lunn JE; Van Dijck P; Balazadeh S; Mueller-Roeber B
    Plant Physiol; 2015 Sep; 169(1):379-90. PubMed ID: 26149570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The psychedelic genes of maize redundantly promote carbohydrate export from leaves.
    Slewinski TL; Braun DM
    Genetics; 2010 May; 185(1):221-32. PubMed ID: 20142436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon metabolite feedback regulation of leaf photosynthesis and development.
    Paul MJ; Pellny TK
    J Exp Bot; 2003 Jan; 54(382):539-47. PubMed ID: 12508065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize.
    AbdElgawad H; Avramova V; Baggerman G; Van Raemdonck G; Valkenborg D; Van Ostade X; Guisez Y; Prinsen E; Asard H; Van den Ende W; Beemster GTS
    Plant Cell Environ; 2020 Sep; 43(9):2254-2271. PubMed ID: 32488892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.
    Gerlach N; Schmitz J; Polatajko A; Schlüter U; Fahnenstich H; Witt S; Fernie AR; Uroic K; Scholz U; Sonnewald U; Bucher M
    Plant Cell Environ; 2015 Aug; 38(8):1591-612. PubMed ID: 25630535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis.
    Wingler A; Fritzius T; Wiemken A; Boller T; Aeschbacher RA
    Plant Physiol; 2000 Sep; 124(1):105-14. PubMed ID: 10982426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods.
    Sulpice R; Flis A; Ivakov AA; Apelt F; Krohn N; Encke B; Abel C; Feil R; Lunn JE; Stitt M
    Mol Plant; 2014 Jan; 7(1):137-55. PubMed ID: 24121291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize.
    Song Y; Zhang Z; Tan X; Jiang Y; Gao J; Lin L; Wang Z; Ren J; Wang X; Qin L; Cheng W; Qi J; Kuai B
    Sci Rep; 2016 Jul; 6():29843. PubMed ID: 27435114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.).
    Yang M; Geng M; Shen P; Chen X; Li Y; Wen X
    Plant Physiol Biochem; 2019 Feb; 135():304-309. PubMed ID: 30599307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.