These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 27582746)
1. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata. Cherukupalli N; Divate M; Mittapelli SR; Khareedu VR; Vudem DR Front Plant Sci; 2016; 7():1203. PubMed ID: 27582746 [TBL] [Abstract][Full Text] [Related]
3. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Singh R; Singh A; Mahato AK; Paliwal R; Tiwari G; Kumar A Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298166 [No Abstract] [Full Text] [Related]
4. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Lateef A; Prabhudas SK; Natarajan P Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583 [TBL] [Abstract][Full Text] [Related]
5. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. Kalra S; Puniya BL; Kulshreshtha D; Kumar S; Kaur J; Ramachandran S; Singh K PLoS One; 2013; 8(12):e83336. PubMed ID: 24376689 [TBL] [Abstract][Full Text] [Related]
6. Sequencing, De novo Assembly, Functional Annotation and Analysis of Phyllanthus amarus Leaf Transcriptome Using the Illumina Platform. Bose Mazumdar A; Chattopadhyay S Front Plant Sci; 2015; 6():1199. PubMed ID: 26858723 [TBL] [Abstract][Full Text] [Related]
7. De novo transcriptome of Gymnema sylvestre identified putative lncRNA and genes regulating terpenoid biosynthesis pathway. Ayachit G; Shaikh I; Sharma P; Jani B; Shukla L; Sharma P; Bhairappanavar SB; Joshi C; Das J Sci Rep; 2019 Oct; 9(1):14876. PubMed ID: 31619732 [TBL] [Abstract][Full Text] [Related]
8. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Guo X; Li Y; Li C; Luo H; Wang L; Qian J; Luo X; Xiang L; Song J; Sun C; Xu H; Yao H; Chen S Gene; 2013 Sep; 527(1):131-8. PubMed ID: 23756193 [TBL] [Abstract][Full Text] [Related]
10. De novo assembly and characterization of transcriptome in the medicinal plant Euphorbia jolkini. Roy NS; Lee IH; Kim JA; Ramekar RV; Park KC; Park NI; Yeo JH; Choi IY; Kim S Genes Genomics; 2020 Sep; 42(9):1011-1021. PubMed ID: 32715384 [TBL] [Abstract][Full Text] [Related]
11. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology. Sun XD; Yu XH; Zhou SM; Liu SQ Mol Genet Genomics; 2016 Apr; 291(2):647-59. PubMed ID: 26515796 [TBL] [Abstract][Full Text] [Related]
12. Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (Lens culinaris Medik.) transcriptome. Verma P; Shah N; Bhatia S Plant Biotechnol J; 2013 Sep; 11(7):894-905. PubMed ID: 23759076 [TBL] [Abstract][Full Text] [Related]
13. De novo transcriptome analysis unravels tissue-specific expression of candidate genes involved in major secondary metabolite biosynthetic pathways of Karpaga Raja Sundari B; Budhwar R; Dwarakanath BS; Thyagarajan SP 3 Biotech; 2020 Jun; 10(6):271. PubMed ID: 32523865 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis. Ma J; Kanakala S; He Y; Zhang J; Zhong X PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053 [TBL] [Abstract][Full Text] [Related]
15. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis for molecular landscaping of genes controlling diterpene andrographolide biosynthesis in Patel AA; Shukla YM; Kumar S; Sakure AA; Parekh MJ; Zala HN 3 Biotech; 2020 Dec; 10(12):512. PubMed ID: 33173716 [TBL] [Abstract][Full Text] [Related]
17. De novo transcriptome analysis of Tibetan medicinal plant Dysphania schraderiana. Fu S; Lei M; Zhang Y; Deng Z; Shi J; Hao D Genet Mol Biol; 2019; 42(2):480-487. PubMed ID: 31259355 [TBL] [Abstract][Full Text] [Related]
18. De novo assembly, functional annotation, and analysis of the giant reed ( Evangelistella C; Valentini A; Ludovisi R; Firrincieli A; Fabbrini F; Scalabrin S; Cattonaro F; Morgante M; Mugnozza GS; Keurentjes JJB; Harfouche A Biotechnol Biofuels; 2017; 10():138. PubMed ID: 28572841 [TBL] [Abstract][Full Text] [Related]
19. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja. Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006 [TBL] [Abstract][Full Text] [Related]
20. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. Zhang S; Shi Y; Cheng N; Du H; Fan W; Wang C PLoS One; 2015; 10(3):e0122170. PubMed ID: 25799491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]