These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27583679)

  • 1. The Foraging Brain: Evidence of Lévy Dynamics in Brain Networks.
    Costa T; Boccignone G; Cauda F; Ferraro M
    PLoS One; 2016; 11(9):e0161702. PubMed ID: 27583679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic resonance in continuous and spiking neuron models with levy noise.
    Patel A; Kosko B
    IEEE Trans Neural Netw; 2008 Dec; 19(12):1993-2008. PubMed ID: 19054725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale intrinsic connectivity is consistent across varying task demands.
    Kieliba P; Madugula S; Filippini N; Duff EP; Makin TR
    PLoS One; 2019; 14(4):e0213861. PubMed ID: 30970031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construct validation of a DCM for resting state fMRI.
    Razi A; Kahan J; Rees G; Friston KJ
    Neuroimage; 2015 Feb; 106():1-14. PubMed ID: 25463471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment.
    Jia W; Zeng Y
    Sci Rep; 2021 Jan; 11(1):2119. PubMed ID: 33483583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging concepts for the dynamical organization of resting-state activity in the brain.
    Deco G; Jirsa VK; McIntosh AR
    Nat Rev Neurosci; 2011 Jan; 12(1):43-56. PubMed ID: 21170073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed connectivity of brain default networks in resting state using GCA and motif.
    Jiao Z; Wang H; Ma K; Zou L; Xiang J
    Front Biosci (Landmark Ed); 2017 Jun; 22(10):1634-1643. PubMed ID: 28410136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Correlation of Resting State Functional Connectivity with Behavioral and Psychological Indices].
    Martynova O; Balaev V; Sushiskaia-Tetereva A; Ivanitsky A
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2016 Sep; 66(5):541-555. PubMed ID: 30695400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting brain dynamics at different timescales capture distinct aspects of human behavior.
    Liégeois R; Li J; Kong R; Orban C; Van De Ville D; Ge T; Sabuncu MR; Yeo BTT
    Nat Commun; 2019 May; 10(1):2317. PubMed ID: 31127095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The State of Resting State Networks.
    Seitzman BA; Snyder AZ; Leuthardt EC; Shimony JS
    Top Magn Reson Imaging; 2019 Aug; 28(4):189-196. PubMed ID: 31385898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pairwise maximum entropy model accurately describes resting-state human brain networks.
    Watanabe T; Hirose S; Wada H; Imai Y; Machida T; Shirouzu I; Konishi S; Miyashita Y; Masuda N
    Nat Commun; 2013; 4():1370. PubMed ID: 23340410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.
    Di X; Biswal BB
    Neuroimage; 2014 Feb; 86():53-9. PubMed ID: 23927904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
    Murphy K; Birn RM; Handwerker DA; Jones TB; Bandettini PA
    Neuroimage; 2009 Feb; 44(3):893-905. PubMed ID: 18976716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
    Huang X; Xu K; Chu C; Jiang T; Yu S
    J Neurosci; 2017 Oct; 37(43):10481-10497. PubMed ID: 28951453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.