BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2758393)

  • 1. Chromosomal composition of malignant human gliomas through serial subcutaneous transplantation in athymic mice.
    Bigner SH; Schold SC; Friedman HS; Mark J; Bigner DD
    Cancer Genet Cytogenet; 1989 Jul; 40(1):111-20. PubMed ID: 2758393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA content and chromosomal composition of malignant human gliomas.
    Bigner SH; Bjerkvig R; Laerum OD
    Neurol Clin; 1985 Nov; 3(4):769-84. PubMed ID: 3001489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific chromosomal abnormalities in malignant human gliomas.
    Bigner SH; Mark J; Burger PC; Mahaley MS; Bullard DE; Muhlbaier LH; Bigner DD
    Cancer Res; 1988 Jan; 48(2):405-11. PubMed ID: 3335011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal progression of malignant human gliomas from biopsy to establishment as permanent lines in vitro.
    Bigner SH; Mark J; Bigner DD
    Cancer Genet Cytogenet; 1987 Jan; 24(1):163-76. PubMed ID: 3466669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serially transplantable human giant cell glioblastoma that maintains a near-haploid stem line.
    Bigner SH; Mark J; Schold SC; Eng LF; Bigner DD
    Cancer Genet Cytogenet; 1985 Oct; 18(2):141-53. PubMed ID: 3840409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific chromosomal abnormalities characterize four established cell lines derived from malignant human gliomas.
    Bigner SH; Friedman HS; Biegel JA; Wikstrand CJ; Mark J; Gebhardt R; Eng LF; Bigner DD
    Acta Neuropathol; 1986; 72(1):86-97. PubMed ID: 2881426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing complexity of the karyotype in 50 human gliomas. Progressive evolution and de novo occurrence of cytogenetic alterations.
    Magnani I; Guerneri S; Pollo B; Cirenei N; Colombo BM; Broggi G; Galli C; Bugiani O; DiDonato S; Finocchiaro G
    Cancer Genet Cytogenet; 1994 Jul; 75(2):77-89. PubMed ID: 8055485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosomal analysis of sixteen human rhabdomyosarcomas.
    Wang-Wuu S; Soukup S; Ballard E; Gotwals B; Lampkin B
    Cancer Res; 1988 Feb; 48(4):983-7. PubMed ID: 3338090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts.
    Bigner SH; Humphrey PA; Wong AJ; Vogelstein B; Mark J; Friedman HS; Bigner DD
    Cancer Res; 1990 Dec; 50(24):8017-22. PubMed ID: 2253244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of morphological, functional, and karyotypic traits during long-term culture and in vivo passage of two human skin squamous cell carcinomas.
    Tilgen W; Boukamp P; Breitkreutz D; Dzarlieva RT; Engstner M; Haag D; Fusenig NE
    Cancer Res; 1983 Dec; 43(12 Pt 1):5995-6011. PubMed ID: 6196111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serial cytogenetic studies of human colonic tumour xenografts.
    Reeves BR; Houghton JA
    Br J Cancer; 1978 Apr; 37(4):612-9. PubMed ID: 646932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth patterns of human neuroblastoma xenografts and their relationship to treatment outcome.
    George BA; Yanik G; Wells RJ; Martin LW; Soukup S; Ballard ET; Gartside PS; Lampkin BC
    Cancer; 1993 Dec; 72(11):3331-9. PubMed ID: 8242560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Karyotypes in 90 human gliomas.
    Thiel G; Losanowa T; Kintzel D; Nisch G; Martin H; Vorpahl K; Witkowski R
    Cancer Genet Cytogenet; 1992 Feb; 58(2):109-20. PubMed ID: 1551072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purine and pyrimidine metabolism in human gliomas: relation to chromosomal aberrations.
    Bardot V; Dutrillaux AM; Delattre JY; Vega F; Poisson M; Dutrillaux B; Luccioni C
    Br J Cancer; 1994 Aug; 70(2):212-8. PubMed ID: 8054268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic reflection of glioblastoma biopsy material in xenografts: characterization of 11 glioblastoma xenograft lines by comparative genomic hybridization.
    Jeuken JW; Sprenger SH; Wesseling P; Bernsen HJ; Suijkerbuijk RF; Roelofs F; Macville MV; Gilhuis HJ; van Overbeeke JJ; Boerman RH
    J Neurosurg; 2000 Apr; 92(4):652-8. PubMed ID: 10761656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts.
    Humphrey PA; Wong AJ; Vogelstein B; Friedman HS; Werner MH; Bigner DD; Bigner SH
    Cancer Res; 1988 Apr; 48(8):2231-8. PubMed ID: 3258189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytogenetics of undifferentiated nasopharyngeal carcinoma xenografts from southern Chinese.
    Huang DP; Ho JH; Chan WK; Lau WH; Lui M
    Int J Cancer; 1989 May; 43(5):936-9. PubMed ID: 2714899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome and chromosomal progression of human gliomas in vivo, in vitro and in athymic nude mice.
    Bigner SH; Mark J
    Prog Exp Tumor Res; 1984; 27():67-82. PubMed ID: 6091178
    [No Abstract]   [Full Text] [Related]  

  • 19. Flow cytometric and karyotypic analysis of a primary small cell carcinoma of the prostate: a xenografted cell line.
    Pittman S; Russell PJ; Jelbart ME; Wass J; Raghavan D
    Cancer Genet Cytogenet; 1987 May; 26(1):165-9. PubMed ID: 3030535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome findings in human neuroblastomas xenografted in nude mice.
    Kaneko Y; Tsuchida Y; Maseki N; Takasaki N; Sakurai M; Saito S
    Jpn J Cancer Res; 1985 May; 76(5):359-64. PubMed ID: 3924709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.