BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27584153)

  • 1. In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance.
    Zhu X; Tian C; Veith GM; Abney CW; Dehaudt J; Dai S
    J Am Chem Soc; 2016 Sep; 138(36):11497-500. PubMed ID: 27584153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superacid-promoted synthesis of highly porous hypercrosslinked polycarbazoles for efficient CO
    Zhu X; Ding S; Abney CW; Browning KL; Sacci RL; Veith GM; Tian C; Dai S
    Chem Commun (Camb); 2017 Jul; 53(54):7645-7648. PubMed ID: 28642957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities.
    Wang G; Onyshchenko Y; De Geyter N; Morent R; Leus K; Van Der Voort P
    Dalton Trans; 2019 Dec; 48(47):17612-17619. PubMed ID: 31755487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO
    Zhu X; Tian C; Wu H; He Y; He L; Wang H; Zhuang X; Liu H; Xia C; Dai S
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43588-43594. PubMed ID: 30482016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO
    Wang G; Leus K; Zhao S; Van Der Voort P
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized Covalent Triazine Frameworks for Effective CO
    Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO
    Yao C; Li G; Wang J; Xu Y; Chang L
    Sci Rep; 2018 Jan; 8(1):1867. PubMed ID: 29382875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO
    Dang Y; Guo W; Zhao L; Zhu H
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30002-30013. PubMed ID: 28809100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO
    Abdelmoaty YH; Tessema TD; Norouzi N; El-Kadri OM; Turner JBM; El-Kaderi HM
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35802-35810. PubMed ID: 28956436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-Rich Porous Polymers for Carbon Dioxide and Iodine Sequestration for Environmental Remediation.
    Abdelmoaty YH; Tessema TD; Choudhury FA; El-Kadri OM; El-Kaderi HM
    ACS Appl Mater Interfaces; 2018 May; 10(18):16049-16058. PubMed ID: 29671571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Playing with covalent triazine framework tiles for improved CO
    Tuci G; Iemhoff A; Ba H; Luconi L; Rossin A; Papaefthimiou V; Palkovits R; Artz J; Pham-Huu C; Giambastiani G
    Beilstein J Nanotechnol; 2019; 10():1217-1227. PubMed ID: 31293859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors.
    Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing highly porous carbon materials from porous organic polymers for superior CO
    Chen J; Jiang L; Wang W; Shen Z; Liu S; Li X; Wang Y
    J Colloid Interface Sci; 2022 Mar; 609():775-784. PubMed ID: 34839919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture.
    Wang K; Huang H; Liu D; Wang C; Li J; Zhong C
    Environ Sci Technol; 2016 May; 50(9):4869-76. PubMed ID: 27081869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO
    Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P
    Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks.
    Wang X; Zhang C; Zhao Y; Ren S; Jiang JX
    Macromol Rapid Commun; 2016 Feb; 37(4):323-9. PubMed ID: 26697782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.
    Jalilov AS; Ruan G; Hwang CC; Schipper DE; Tour JJ; Li Y; Fei H; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1376-82. PubMed ID: 25531980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage.
    Lee YJ; Talapaneni SN; Coskun A
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30679-30685. PubMed ID: 28782930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.