These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27584616)

  • 1. Three-Fragment Fluorescence Complementation Coupled with Photoactivated Localization Microscopy for Nanoscale Imaging of Ternary Complexes.
    Chen M; Liu S; Li W; Zhang Z; Zhang X; Zhang XE; Cui Z
    ACS Nano; 2016 Sep; 10(9):8482-90. PubMed ID: 27584616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Fragment Fluorescence Complementation for Imaging of Ternary Complexes under Physiological Conditions.
    Chen M; Li W; Zhang ZP; Pan J; Sun Y; Zhang X; Zhang XE; Cui Z
    Anal Chem; 2018 Nov; 90(22):13299-13305. PubMed ID: 30365299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Imaging of RNA-Protein Interactions with a Photoactivatable Trimolecular Fluorescence Complementation System.
    Chen M; Li S; Li W; Zhang ZP; Zhang X; Zhang XE; Ge F; Cui Z
    ACS Chem Biol; 2021 Jun; 16(6):1003-1010. PubMed ID: 34009928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoactivated Localization Microscopy with Bimolecular Fluorescence Complementation (BiFC-PALM).
    Nickerson A; Huang T; Lin LJ; Nan X
    J Vis Exp; 2015 Dec; (106):e53154. PubMed ID: 26779930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells.
    Nickerson A; Huang T; Lin LJ; Nan X
    PLoS One; 2014; 9(6):e100589. PubMed ID: 24963703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoactivatable BODIPYs for Live-Cell PALM.
    Zhang Y; Zheng Y; Tomassini A; Singh AK; Raymo FM
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of AP-1 NF-kappaB ternary complexes in living cells by using a BiFC-based FRET.
    Shyu YJ; Suarez CD; Hu CD
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):151-6. PubMed ID: 18172215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivated Localization Microscopy (PALM) of adhesion complexes.
    Shroff H; White H; Betzig E
    Curr Protoc Cell Biol; 2013 Mar; Chapter 4():4.21.1-4.21.28. PubMed ID: 23456603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving multi-molecular protein interactions by photoactivated localization microscopy.
    Sherman E; Barr VA; Samelson LE
    Methods; 2013 Mar; 59(3):261-9. PubMed ID: 23266704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM.
    Shtengel G; Wang Y; Zhang Z; Goh WI; Hess HF; Kanchanawong P
    Methods Cell Biol; 2014; 123():273-94. PubMed ID: 24974033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoactivatable Fluorophores for Bioimaging Applications.
    Zhang Y; Zheng Y; Tomassini A; Singh AK; Raymo FM
    ACS Appl Opt Mater; 2023 Mar; 1(3):640-651. PubMed ID: 37601830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photoactivatable marker protein for pulse-chase imaging with superresolution.
    Fuchs J; Böhme S; Oswald F; Hedde PN; Krause M; Wiedenmann J; Nienhaus GU
    Nat Methods; 2010 Aug; 7(8):627-30. PubMed ID: 20601949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoactivated localization microscopy (PALM) of adhesion complexes.
    Shroff H; White H; Betzig E
    Curr Protoc Cell Biol; 2008 Dec; Chapter 4():Unit 4.21. PubMed ID: 19085989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of G protein betagamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits.
    Mervine SM; Yost EA; Sabo JL; Hynes TR; Berlot CH
    Mol Pharmacol; 2006 Jul; 70(1):194-205. PubMed ID: 16641313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics.
    Shroff H; Galbraith CG; Galbraith JA; Betzig E
    Nat Methods; 2008 May; 5(5):417-23. PubMed ID: 18408726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics.
    Manley S; Gillette JM; Lippincott-Schwartz J
    Methods Enzymol; 2010; 475():109-20. PubMed ID: 20627155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function.
    Scarselli M; Annibale P; McCormick PJ; Kolachalam S; Aringhieri S; Radenovic A; Corsini GU; Maggio R
    FEBS J; 2016 Apr; 283(7):1197-217. PubMed ID: 26509747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D super-resolution imaging by localization microscopy.
    Magenau A; Gaus K
    Methods Mol Biol; 2015; 1232():123-36. PubMed ID: 25331133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy.
    Scarselli M; Annibale P; Gerace C; Radenovic A
    Biochem Soc Trans; 2013 Feb; 41(1):191-6. PubMed ID: 23356282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualizing G protein-coupled receptor homomers using photoactivatable dye localization microscopy.
    Agwuegbo U; Jonas KC
    Methods Cell Biol; 2022; 169():27-41. PubMed ID: 35623706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.