These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 27584904)
1. Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture. Bilanovic D; Holland M; Starosvetsky J; Armon R Bioresour Technol; 2016 Nov; 220():282-288. PubMed ID: 27584904 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide. Huang Y; Xiong W; Liao Q; Fu Q; Xia A; Zhu X; Sun Y Bioresour Technol; 2016 Dec; 222():367-373. PubMed ID: 27741475 [TBL] [Abstract][Full Text] [Related]
3. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086 [TBL] [Abstract][Full Text] [Related]
4. Sugar-stimulated CO Fu W; Gudmundsson S; Wichuk K; Palsson S; Palsson BO; Salehi-Ashtiani K; Brynjólfsson S Sci Total Environ; 2019 Mar; 654():275-283. PubMed ID: 30445327 [TBL] [Abstract][Full Text] [Related]
5. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology. Wang X; Bao K; Cao W; Zhao Y; Hu CW Sci Rep; 2017 Jul; 7(1):5426. PubMed ID: 28710391 [TBL] [Abstract][Full Text] [Related]
6. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634 [TBL] [Abstract][Full Text] [Related]
7. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Cheah WY; Show PL; Chang JS; Ling TC; Juan JC Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054 [TBL] [Abstract][Full Text] [Related]
8. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Zhang Z; Ji H; Gong G; Zhang X; Tan T Bioresour Technol; 2014 Jul; 164():93-9. PubMed ID: 24841576 [TBL] [Abstract][Full Text] [Related]
9. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
10. Exploring an in situ LED-illuminated isothermal micro-calorimetric method to investigating the thermodynamic behavior of Chlorella vulgaris during CO Russel M; Liu C; Alam A; Wang F; Yao J; Daroch M; Shah MR; Wang Z Environ Sci Pollut Res Int; 2018 Jul; 25(19):18519-18527. PubMed ID: 29700746 [TBL] [Abstract][Full Text] [Related]
12. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Chang HX; Huang Y; Fu Q; Liao Q; Zhu X Bioresour Technol; 2016 Apr; 206():231-238. PubMed ID: 26866758 [TBL] [Abstract][Full Text] [Related]
13. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Cho DH; Ramanan R; Heo J; Lee J; Kim BH; Oh HM; Kim HS Bioresour Technol; 2015 Jan; 175():578-85. PubMed ID: 25459870 [TBL] [Abstract][Full Text] [Related]
14. Efficiency of CO2 fixation by microalgae in a closed raceway pond. Li S; Luo S; Guo R Bioresour Technol; 2013 May; 136():267-72. PubMed ID: 23567690 [TBL] [Abstract][Full Text] [Related]
15. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors. Guo Z; Phooi WBA; Lim ZJ; Tong YW Bioresour Technol; 2015 Jun; 186():238-245. PubMed ID: 25817035 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium. Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399 [TBL] [Abstract][Full Text] [Related]
17. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006 [TBL] [Abstract][Full Text] [Related]
18. Application of computational fluid dynamics to raceways combining paddlewheel and CO Kusmayadi A; Philippidis GP; Yen HW J Biosci Bioeng; 2020 Jan; 129(1):93-98. PubMed ID: 31331795 [TBL] [Abstract][Full Text] [Related]
19. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related]
20. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]