These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27584904)

  • 21. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.
    Razzak SA; Ali SA; Hossain MM; Mouanda AN
    Bioprocess Biosyst Eng; 2016 Nov; 39(11):1651-8. PubMed ID: 27307068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of vitamin B12 to biogas upgrading and nutrient removal by different microalgae-based technology.
    Xu B; Liu J; Zhao C; Sun S; Zhao Y; Liu J; Xu J; Wu D
    World J Microbiol Biotechnol; 2021 Nov; 37(12):216. PubMed ID: 34762196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads.
    Kitcha S; Cheirsilp B
    Appl Biochem Biotechnol; 2014 May; 173(2):522-34. PubMed ID: 24676571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.
    Moreira D; Pires JCM
    Bioresour Technol; 2016 Sep; 215():371-379. PubMed ID: 27005790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.
    Adamczyk M; Lasek J; Skawińska A
    Appl Biochem Biotechnol; 2016 Aug; 179(7):1248-61. PubMed ID: 27052208
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.
    Luangpipat T; Chisti Y
    J Biotechnol; 2017 Sep; 257():47-57. PubMed ID: 27914890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.
    Huang Y; Sun Y; Liao Q; Fu Q; Xia A; Zhu X
    Bioresour Technol; 2016 Sep; 216():669-76. PubMed ID: 27289058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azospirillum brasilense Increases CO
    Choix FJ; López-Cisneros CG; Méndez-Acosta HO
    Microb Ecol; 2018 Aug; 76(2):430-442. PubMed ID: 29327073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.
    Anjos M; Fernandes BD; Vicente AA; Teixeira JA; Dragone G
    Bioresour Technol; 2013 Jul; 139():149-54. PubMed ID: 23648764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.
    Wang Y; Yang Y; Ma F; Xuan L; Xu Y; Huo H; Zhou D; Dong S
    Lett Appl Microbiol; 2015 May; 60(5):497-503. PubMed ID: 25693426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.
    Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM
    J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological CO
    de Morais MG; de Morais EG; Duarte JH; Deamici KM; Mitchell BG; Costa JAV
    World J Microbiol Biotechnol; 2019 May; 35(5):78. PubMed ID: 31087167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation.
    Yen HW; Chen PW; Chen LJ
    Bioresour Technol; 2015 May; 184():148-152. PubMed ID: 25311189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.
    Maurya R; Paliwal C; Chokshi K; Pancha I; Ghosh T; Satpati GG; Pal R; Ghosh A; Mishra S
    Bioresour Technol; 2016 May; 207():197-204. PubMed ID: 26890794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear predictive control for maximization of CO₂ bio-fixation by microalgae in a photobioreactor.
    Tebbani S; Lopes F; Filali R; Dumur D; Pareau D
    Bioprocess Biosyst Eng; 2014 Jan; 37(1):83-97. PubMed ID: 23515629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism.
    Li Y; Zhang Z; Duan Y; Wang H
    Bioresour Technol; 2019 May; 280():188-198. PubMed ID: 30771574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.