These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27584906)

  • 21. Highly parallel transport recordings on a membrane-on-nanopore chip at single molecule resolution.
    Urban M; Kleefen A; Mukherjee N; Seelheim P; Windschiegl B; Vor der Brüggen M; Koçer A; Tampé R
    Nano Lett; 2014 Mar; 14(3):1674-80. PubMed ID: 24524682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations.
    Luchini A; Tidemand FG; Johansen NT; Campana M; Sotres J; Ploug M; Cárdenas M; Arleth L
    Anal Chem; 2020 Jan; 92(1):1081-1088. PubMed ID: 31769649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.
    Richards MJ; Hsia CY; Singh RR; Haider H; Kumpf J; Kawate T; Daniel S
    Langmuir; 2016 Mar; 32(12):2963-74. PubMed ID: 26812542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated formation of lipid membrane microarrays for ionic single-molecule sensing with protein nanopores.
    del Rio Martinez JM; Zaitseva E; Petersen S; Baaken G; Behrends JC
    Small; 2015 Jan; 11(1):119-25. PubMed ID: 25115837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Membrane Protein Deinsertion-Associated Currents with Nanoneedle-Supported Bilayers to Discover Pore Formation Mechanisms.
    Shoji K; Kawano R; White RJ
    Langmuir; 2020 Sep; 36(34):10012-10021. PubMed ID: 32787048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment.
    Rice AJ; Harrison A; Alvarez FJ; Davidson AL; Pinkett HW
    J Biol Chem; 2014 May; 289(21):15005-13. PubMed ID: 24722984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy.
    Burns JR; Howorka S
    ACS Nano; 2018 Apr; 12(4):3263-3271. PubMed ID: 29493216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Destructing the Plasma Membrane with Activatable Vesicular DNA Nanopores.
    Chen L; Liang S; Chen Y; Wu M; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):96-105. PubMed ID: 31815409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local membrane mechanics of pore-spanning bilayers.
    Mey I; Stephan M; Schmitt EK; Müller MM; Ben Amar M; Steinem C; Janshoff A
    J Am Chem Soc; 2009 May; 131(20):7031-9. PubMed ID: 19453196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.
    Bessonov A; Takemoto JY; Simmel FC
    ACS Nano; 2012 Apr; 6(4):3356-63. PubMed ID: 22424398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid lipid bilayer membrane formation on Parylene coated apertures to perform ion channel analyses.
    Ahmed T; van den Driesche S; Bafna JA; Oellers M; Hemmler R; Gall K; Wagner R; Winterhalter M; Vellekoop MJ
    Biomed Microdevices; 2020 Apr; 22(2):32. PubMed ID: 32355998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray.
    Baaken G; Ankri N; Schuler AK; Rühe J; Behrends JC
    ACS Nano; 2011 Oct; 5(10):8080-8. PubMed ID: 21932787
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles.
    Teiwes NK; Mey I; Baumann PC; Strieker L; Unkelbach U; Steinem C
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25805-25812. PubMed ID: 34043315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent.
    Di Pasquale E; Chahinian H; Sanchez P; Fantini J
    PLoS One; 2009; 4(3):e4989. PubMed ID: 19330032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of phospholipid bilayer integrity in the analysis of protein-lipid interactions.
    Drücker P; Gerke V; Galla HJ
    Biochem Biophys Res Commun; 2014 Oct; 453(1):143-7. PubMed ID: 25264195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes.
    Offenbartl-Stiegert D; Rottensteiner A; Dorey A; Howorka S
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202210886. PubMed ID: 36318092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanopore unitary permeability measured by electrochemical and optical single transporter recording.
    Hemmler R; Böse G; Wagner R; Peters R
    Biophys J; 2005 Jun; 88(6):4000-7. PubMed ID: 15749773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liposome and lipid bilayer arrays towards biosensing applications.
    Bally M; Bailey K; Sugihara K; Grieshaber D; Vörös J; Städler B
    Small; 2010 Nov; 6(22):2481-97. PubMed ID: 20925039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.