These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 27585270)
1. Lead immobilization by geological fluorapatite and fungus Aspergillus niger. Li Z; Wang F; Bai T; Tao J; Guo J; Yang M; Wang S; Hu S J Hazard Mater; 2016 Dec; 320():386-392. PubMed ID: 27585270 [TBL] [Abstract][Full Text] [Related]
2. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum. Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937 [TBL] [Abstract][Full Text] [Related]
3. Cadmium immobilization in aqueous solution by Aspergillus niger and geological fluorapatite. Okolie CU; Chen H; Zhao Y; Tian D; Zhang L; Su M; Jiang Z; Li Z; Li H Environ Sci Pollut Res Int; 2020 Mar; 27(7):7647-7656. PubMed ID: 31889269 [TBL] [Abstract][Full Text] [Related]
4. Lead remediation by geological fluorapatite combined with Penicillium Oxalicum and Red yeast. Guan Q; Cheng X; He Y; Yan Y; Zhang L; Wang Z; Zhang L; Tian D Microb Cell Fact; 2024 Feb; 23(1):64. PubMed ID: 38402158 [TBL] [Abstract][Full Text] [Related]
5. Application of phosphogypsum and phosphate-solubilizing fungi to Pb remediation: From simulation to in vivo incubation. Meng L; Ding K; Qiu Y; Chen Y; Huo H; Yu D; Tian D; Li Z Sci Total Environ; 2024 Jul; 933():173171. PubMed ID: 38740208 [TBL] [Abstract][Full Text] [Related]
6. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations. Ceci A; Kierans M; Hillier S; Persiani AM; Gadd GM Appl Environ Microbiol; 2015 Aug; 81(15):4955-64. PubMed ID: 25979898 [TBL] [Abstract][Full Text] [Related]
7. Induced biotransformation of lead (II) by Enterobacter sp. in SO Li Z; Su M; Duan X; Tian D; Yang M; Guo J; Wang S; Hu S J Hazard Mater; 2018 Sep; 357():491-497. PubMed ID: 29940467 [TBL] [Abstract][Full Text] [Related]
8. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values. Zhang L; Song X; Shao X; Wu Y; Zhang X; Wang S; Pan J; Hu S; Li Z Sci Rep; 2019 Sep; 9(1):13353. PubMed ID: 31527665 [TBL] [Abstract][Full Text] [Related]
9. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation. McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974 [TBL] [Abstract][Full Text] [Related]
10. The dissolution of fluorapatite by phosphate-solubilizing fungi: a balance between enhanced phosphorous supply and fluorine toxicity. Shao X; Hao W; Konhauser KO; Gao Y; Tang L; Su M; Li Z Environ Sci Pollut Res Int; 2021 Dec; 28(48):69393-69400. PubMed ID: 34302245 [TBL] [Abstract][Full Text] [Related]
11. Lead mineral transformation by fungi. Sayer JA; Cotter-Howells JD; Watson C; Hillier S; Gadd GM Curr Biol; 1999 Jul; 9(13):691-4. PubMed ID: 10395543 [TBL] [Abstract][Full Text] [Related]
12. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi. Ceci A; Rhee YJ; Kierans M; Hillier S; Pendlowski H; Gray N; Persiani AM; Gadd GM Environ Microbiol; 2015 Jun; 17(6):2018-34. PubMed ID: 25181352 [TBL] [Abstract][Full Text] [Related]
13. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite. Li C; Li Q; Wang Z; Ji G; Zhao H; Gao F; Su M; Jiao J; Li Z; Li H Sci Rep; 2019 Oct; 9(1):15291. PubMed ID: 31653926 [TBL] [Abstract][Full Text] [Related]
14. Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. Sayer JA; Kierans M; Gadd GM FEMS Microbiol Lett; 1997 Sep; 154(1):29-35. PubMed ID: 9297818 [TBL] [Abstract][Full Text] [Related]
15. Phosphatase-mediated bioprecipitation of lead by soil fungi. Liang X; Kierans M; Ceci A; Hillier S; Gadd GM Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107 [TBL] [Abstract][Full Text] [Related]
16. Effect of amino acids on biomineralization of lead ions by Aspergillus niger. Zhang J; Hao R; Shan B; Ye Y; Li J; Lu A Water Environ Res; 2023 Sep; 95(9):e10924. PubMed ID: 37650371 [TBL] [Abstract][Full Text] [Related]
17. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum. Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848 [TBL] [Abstract][Full Text] [Related]
18. Characterization of aqueous lead removal by phosphatic clay: equilibrium and kinetic studies. Singh SP; Ma LQ; Hendry MJ J Hazard Mater; 2006 Aug; 136(3):654-62. PubMed ID: 16487656 [TBL] [Abstract][Full Text] [Related]
19. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite. Wei W; Cui J; Wei Z Chemosphere; 2014 Jun; 105():14-23. PubMed ID: 24216261 [TBL] [Abstract][Full Text] [Related]
20. A study of P release from Fe-P and Ca-P via the organic acids secreted by Aspergillus niger. Tian D; Wang L; Hu J; Zhang L; Zhou N; Xia J; Xu M; Yusef KK; Wang S; Li Z; Gao H J Microbiol; 2021 Sep; 59(9):819-826. PubMed ID: 34382148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]