These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27585446)

  • 1. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.
    Tiwari AK; Prasad J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):395-410. PubMed ID: 27585446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus.
    Tiwari AK; Kumar R; Tripathi D; Badhyal S
    J Theor Biol; 2018 Jun; 446():110-127. PubMed ID: 29534894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling cortical bone adaptation using strain gradients.
    Tiwari AK; Goyal A; Prasad J
    Proc Inst Mech Eng H; 2021 Jun; 235(6):636-654. PubMed ID: 33754910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Canalicular fluid flow induced by loading waveforms: A comparative analysis.
    Kumar R; Tiwari AK; Tripathi D; Shrivas NV; Nizam F
    J Theor Biol; 2019 Jun; 471():59-73. PubMed ID: 30930062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of biomechanical stress on bones in animals.
    Burr DB; Robling AG; Turner CH
    Bone; 2002 May; 30(5):781-6. PubMed ID: 11996920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading.
    Mi LY; Fritton SP; Basu M; Cowin SC
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):118-31. PubMed ID: 16254728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of physiological loading induced interstitial fluid motion in muscle standardized femur: Healthy vs. osteoporotic bone.
    Shrivas NV; Badhyal S; Tiwari AK; Mishra A; Tripathi D; Patil S
    Comput Methods Programs Biomed; 2023 Jul; 237():107592. PubMed ID: 37209515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanotransduction in bone: role of strain rate.
    Turner CH; Owan I; Takano Y
    Am J Physiol; 1995 Sep; 269(3 Pt 1):E438-42. PubMed ID: 7573420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canalicular fluid flow induced by bending of a long bone.
    Srinivasan S; Gross TS
    Med Eng Phys; 2000 Mar; 22(2):127-33. PubMed ID: 10854966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone.
    Rubin CT; Lanyon LE
    J Orthop Res; 1987; 5(2):300-10. PubMed ID: 3572599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental tests of planar strain theory for predicting bone cross-sectional longitudinal and shear strains.
    Verner KA; Lehner M; Lamas LP; Main RP
    J Exp Biol; 2016 Oct; 219(Pt 19):3082-3090. PubMed ID: 27471276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation.
    Ramani-Mohan RK; Schwedhelm I; Finne-Wistrand A; Krug M; Schwarz T; Jakob F; Walles H; Hansmann J
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1474-e1479. PubMed ID: 28872256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold.
    Milan JL; Planell JA; Lacroix D
    Biomaterials; 2009 Sep; 30(25):4219-26. PubMed ID: 19477510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study.
    McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ
    FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach.
    Vetsch JR; Betts DC; Müller R; Hofmann S
    PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disuse rescues the age-impaired adaptive response to external loading in mice.
    Meakin LB; Delisser PJ; Galea GL; Lanyon LE; Price JS
    Osteoporos Int; 2015 Nov; 26(11):2703-8. PubMed ID: 25920749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles.
    Srinivasan S; Ausk BJ; Poliachik SL; Warner SE; Richardson TS; Gross TS
    J Appl Physiol (1985); 2007 May; 102(5):1945-52. PubMed ID: 17255366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.