These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice. Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677 [TBL] [Abstract][Full Text] [Related]
4. Wild-Type Hras Suppresses the Earliest Stages of Tumorigenesis in a Genetically Engineered Mouse Model of Pancreatic Cancer. Weyandt JD; Lampson BL; Tang S; Mastrodomenico M; Cardona DM; Counter CM PLoS One; 2015; 10(10):e0140253. PubMed ID: 26452271 [TBL] [Abstract][Full Text] [Related]
5. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Tu Q; Hao J; Zhou X; Yan L; Dai H; Sun B; Yang D; An S; Lv L; Jiao B; Chen C; Lai R; Shi P; Zhao X Oncogene; 2018 Jan; 37(1):128-138. PubMed ID: 28892048 [TBL] [Abstract][Full Text] [Related]
6. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS. Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346 [TBL] [Abstract][Full Text] [Related]
7. Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy. Kong B; Bruns P; Behler NA; Chang L; Schlitter AM; Cao J; Gewies A; Ruland J; Fritzsche S; Valkovskaya N; Jian Z; Regel I; Raulefs S; Irmler M; Beckers J; Friess H; Erkan M; Mueller NS; Roth S; Hackert T; Esposito I; Theis FJ; Kleeff J; Michalski CW Gut; 2018 Jan; 67(1):146-156. PubMed ID: 27646934 [TBL] [Abstract][Full Text] [Related]
8. Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. Schofield HK; Zeller J; Espinoza C; Halbrook CJ; Del Vecchio A; Magnuson B; Fabo T; Cali Daylan AE; Kovalenko I; Lee HJ; Yan W; Feng Y; Karim SA; Kremer DM; Kumar-Sinha C; Lyssiotis CA; Ljungman M; Morton JP; Galbán S; Fearon ER; Pasca di Magliano M JCI Insight; 2018 Jan; 3(2):. PubMed ID: 29367463 [TBL] [Abstract][Full Text] [Related]
9. Oncogenic KRas suppresses inflammation-associated senescence of pancreatic ductal cells. Lee KE; Bar-Sagi D Cancer Cell; 2010 Nov; 18(5):448-58. PubMed ID: 21075310 [TBL] [Abstract][Full Text] [Related]
10. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Lee J; Snyder ER; Liu Y; Gu X; Wang J; Flowers BM; Kim YJ; Park S; Szot GL; Hruban RH; Longacre TA; Kim SK Nat Commun; 2017 Mar; 8():14686. PubMed ID: 28272465 [TBL] [Abstract][Full Text] [Related]
11. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice. Martinelli P; Madriles F; Cañamero M; Pau EC; Pozo ND; Guerra C; Real FX Gut; 2016 Mar; 65(3):476-86. PubMed ID: 25596178 [TBL] [Abstract][Full Text] [Related]
12. p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Bailey JM; Hendley AM; Lafaro KJ; Pruski MA; Jones NC; Alsina J; Younes M; Maitra A; McAllister F; Iacobuzio-Donahue CA; Leach SD Oncogene; 2016 Aug; 35(32):4282-8. PubMed ID: 26592447 [TBL] [Abstract][Full Text] [Related]
13. A human cancer xenograft model utilizing normal pancreatic duct epithelial cells conditionally transformed with defined oncogenes. Inagawa Y; Yamada K; Yugawa T; Ohno S; Hiraoka N; Esaki M; Shibata T; Aoki K; Saya H; Kiyono T Carcinogenesis; 2014 Aug; 35(8):1840-6. PubMed ID: 24858378 [TBL] [Abstract][Full Text] [Related]
14. p53 status determines the role of autophagy in pancreatic tumour development. Rosenfeldt MT; O'Prey J; Morton JP; Nixon C; MacKay G; Mrowinska A; Au A; Rai TS; Zheng L; Ridgway R; Adams PD; Anderson KI; Gottlieb E; Sansom OJ; Ryan KM Nature; 2013 Dec; 504(7479):296-300. PubMed ID: 24305049 [TBL] [Abstract][Full Text] [Related]
15. Molecular Characteristics of Pancreatic Ductal Adenocarcinomas with High-Grade Pancreatic Intraepithelial Neoplasia (PanIN) Are Different from Those without High-Grade PanIN. Miyazaki T; Ohishi Y; Miyasaka Y; Oda Y; Aishima S; Ozono K; Abe A; Nagai E; Nakamura M; Oda Y Pathobiology; 2017; 84(4):192-201. PubMed ID: 28291966 [TBL] [Abstract][Full Text] [Related]
16. Genetics and Biology of Pancreatic Ductal Adenocarcinoma. Dunne RF; Hezel AF Hematol Oncol Clin North Am; 2015 Aug; 29(4):595-608. PubMed ID: 26226899 [TBL] [Abstract][Full Text] [Related]
17. Evolution and dynamics of pancreatic cancer progression. Yachida S; Iacobuzio-Donahue CA Oncogene; 2013 Nov; 32(45):5253-60. PubMed ID: 23416985 [TBL] [Abstract][Full Text] [Related]
18. Important role of Nfkb2 in the Kras Hassan Z; Schneeweis C; Wirth M; Müller S; Geismann C; Neuß T; Steiger K; Krämer OH; Schmid RM; Rad R; Arlt A; Reichert M; Saur D; Schneider G Pancreatology; 2021 Aug; 21(5):912-919. PubMed ID: 33824054 [TBL] [Abstract][Full Text] [Related]
19. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16. Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115 [TBL] [Abstract][Full Text] [Related]
20. Lunatic Fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer. Zhang S; Chung WC; Xu K Oncogene; 2016 May; 35(19):2485-95. PubMed ID: 26279302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]