These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 27586051)
1. The parameter sensitivity of random forests. Huang BF; Boutros PC BMC Bioinformatics; 2016 Sep; 17(1):331. PubMed ID: 27586051 [TBL] [Abstract][Full Text] [Related]
2. An experimental study of the intrinsic stability of random forest variable importance measures. Wang H; Yang F; Luo Z BMC Bioinformatics; 2016 Feb; 17():60. PubMed ID: 26842629 [TBL] [Abstract][Full Text] [Related]
3. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Ozçift A Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401 [TBL] [Abstract][Full Text] [Related]
4. On the overestimation of random forest's out-of-bag error. Janitza S; Hornung R PLoS One; 2018; 13(8):e0201904. PubMed ID: 30080866 [TBL] [Abstract][Full Text] [Related]
6. A comparative study of forest methods for time-to-event data: variable selection and predictive performance. Liu Y; Zhou S; Wei H; An S BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138 [TBL] [Abstract][Full Text] [Related]
7. Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest. Collin FD; Durif G; Raynal L; Lombaert E; Gautier M; Vitalis R; Marin JM; Estoup A Mol Ecol Resour; 2021 Nov; 21(8):2598-2613. PubMed ID: 33950563 [TBL] [Abstract][Full Text] [Related]
8. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. Ma L; Fan S BMC Bioinformatics; 2017 Mar; 18(1):169. PubMed ID: 28292263 [TBL] [Abstract][Full Text] [Related]
9. Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake. Li X; Sha J; Wang ZL Environ Sci Pollut Res Int; 2018 Jul; 25(20):19488-19498. PubMed ID: 29730758 [TBL] [Abstract][Full Text] [Related]
10. Classification of large microarray datasets using fast random forest construction. Manilich EA; Özsoyoğlu ZM; Trubachev V; Radivoyevitch T J Bioinform Comput Biol; 2011 Apr; 9(2):251-67. PubMed ID: 21523931 [TBL] [Abstract][Full Text] [Related]
11. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing. Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive decision tree models in bioinformatics. Stiglic G; Kocbek S; Pernek I; Kokol P PLoS One; 2012; 7(3):e33812. PubMed ID: 22479449 [TBL] [Abstract][Full Text] [Related]
13. Cluster ensemble based on Random Forests for genetic data. Alhusain L; Hafez AM BioData Min; 2017; 10():37. PubMed ID: 29270227 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification. Nguyen T; Khosravi A; Creighton D; Nahavandi S PLoS One; 2015; 10(3):e0120364. PubMed ID: 25823003 [TBL] [Abstract][Full Text] [Related]
15. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings. Goldstein BA; Hubbard AE; Cutler A; Barcellos LF BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594 [TBL] [Abstract][Full Text] [Related]
16. Intervention in prediction measure: a new approach to assessing variable importance for random forests. Epifanio I BMC Bioinformatics; 2017 May; 18(1):230. PubMed ID: 28464827 [TBL] [Abstract][Full Text] [Related]
17. binomialRF: interpretable combinatoric efficiency of random forests to identify biomarker interactions. Rachid Zaim S; Kenost C; Berghout J; Chiu W; Wilson L; Zhang HH; Lussier YA BMC Bioinformatics; 2020 Aug; 21(1):374. PubMed ID: 32859146 [TBL] [Abstract][Full Text] [Related]
18. Rotation of random forests for genomic and proteomic classification problems. Stiglic G; Rodriguez JJ; Kokol P Adv Exp Med Biol; 2011; 696():211-21. PubMed ID: 21431561 [TBL] [Abstract][Full Text] [Related]
19. ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data. Huang HL; Chang FL Biosystems; 2007; 90(2):516-28. PubMed ID: 17280775 [TBL] [Abstract][Full Text] [Related]
20. A Systematic Evaluation of Feature Selection and Classification Algorithms Using Simulated and Real miRNA Sequencing Data. Yang S; Guo L; Shao F; Zhao Y; Chen F Comput Math Methods Med; 2015; 2015():178572. PubMed ID: 26508990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]