These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27586105)

  • 21. Improving the safety relevance of automatic emergency braking testing programs: An examination of common characteristics of police-reported rear-end crashes in the United States.
    Kidd DG
    Traffic Inj Prev; 2022; 23(sup1):S137-S142. PubMed ID: 35767826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the minimum swerving distance for the development of a motorcycle autonomous braking system.
    Giovannini F; Savino G; Pierini M; Baldanzini N
    Accid Anal Prev; 2013 Oct; 59():170-84. PubMed ID: 23792616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for predicting crash configurations using counterfactual simulations and real-world data.
    Leledakis A; Lindman M; Östh J; Wågström L; Davidsson J; Jakobsson L
    Accid Anal Prev; 2021 Feb; 150():105932. PubMed ID: 33341681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intersection AEB implementation strategies for left turn across path crashes.
    Sander U; Lubbe N; Pietzsch S
    Traffic Inj Prev; 2019; 20(sup1):S119-S125. PubMed ID: 31381448
    [No Abstract]   [Full Text] [Related]  

  • 26. Market penetration of intersection AEB: Characterizing avoided and residual straight crossing path accidents.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Jun; 115():178-188. PubMed ID: 29604516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2019; 20(sup1):S171-S176. PubMed ID: 31381447
    [No Abstract]   [Full Text] [Related]  

  • 28. A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in China using in-depth Chinese crash data.
    Sui B; Lubbe N; Bärgman J
    Accid Anal Prev; 2019 Nov; 132():105242. PubMed ID: 31446097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motorcycle crashes potentially preventable by three crash avoidance technologies on passenger vehicles.
    Teoh ER
    Traffic Inj Prev; 2018 Jul; 19(5):513-517. PubMed ID: 29624413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H; Östling M; Lubbe N
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulating Automated Emergency Braking with and without Torricelli Vacuum Emergency Braking for cyclists: Effect of brake deceleration and sensor field-of-view on accidents, injuries and fatalities.
    Jeppsson H; Lubbe N
    Accid Anal Prev; 2020 Jul; 142():105538. PubMed ID: 32470821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Issues and challenges for pedestrian active safety systems based on real world accidents.
    Hamdane H; Serre T; Masson C; Anderson R
    Accid Anal Prev; 2015 Sep; 82():53-60. PubMed ID: 26047007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying Vision Zero: Crash avoidance in rural and motorway accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrence.
    Stark L; Düring M; Schoenawa S; Maschke JE; Do CM
    Traffic Inj Prev; 2019; 20(sup1):S126-S132. PubMed ID: 31381430
    [No Abstract]   [Full Text] [Related]  

  • 34. Effectiveness of motorcycle antilock braking systems (ABS) in reducing crashes, the first cross-national study.
    Rizzi M; Strandroth J; Kullgren A; Tingvall C; Fildes B
    Traffic Inj Prev; 2015; 16(2):177-83. PubMed ID: 24884403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Are automatic systems the future of motorcycle safety? A novel methodology to prioritize potential safety solutions based on their projected effectiveness.
    Gil G; Savino G; Piantini S; Baldanzini N; Happee R; Pierini M
    Traffic Inj Prev; 2017 Nov; 18(8):877-885. PubMed ID: 28494162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimate of potential benefit for Europe of fitting Autonomous Emergency Braking (AEB) systems for pedestrian protection to passenger cars.
    Edwards M; Nathanson A; Wisch M
    Traffic Inj Prev; 2014; 15 Suppl 1():S173-82. PubMed ID: 25307384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of front crash prevention systems in reducing large truck real-world crash rates.
    Teoh ER
    Traffic Inj Prev; 2021; 22(4):284-289. PubMed ID: 33769151
    [No Abstract]   [Full Text] [Related]  

  • 38. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():59-65. PubMed ID: 27586104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the feasibility of motorcycle autonomous emergency braking (MAEB): Design criteria for new experiments to field test automatic braking.
    Lucci C; Marra M; Huertas-Leyva P; Baldanzini N; Savino G
    MethodsX; 2021; 8():101225. PubMed ID: 34434748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Forward collision warning system impact.
    Hubele N; Kennedy K
    Traffic Inj Prev; 2018; 19(sup2):S78-S83. PubMed ID: 30001148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.