BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 27586111)

  • 1. Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes.
    Jones DA; Gaewsky JP; Kelley ME; Weaver AA; Miller AN; Stitzel JD
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():109-15. PubMed ID: 27586111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes.
    Gaewsky JP; Weaver AA; Koya B; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 2():S124-31. PubMed ID: 26436221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling and analysis of thoracolumbar spine fractures in frontal crash reconstruction.
    Ye X; Gaewsky JP; Jones DA; Miller LE; Stitzel JD; Weaver AA
    Traffic Inj Prev; 2018; 19(sup2):S32-S39. PubMed ID: 30010420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of driver lower extremity injuries in finite element frontal crash reconstruction.
    Ye X; Gaewsky JP; Miller LE; Jones DA; Kelley ME; Suhey JD; Koya B; Weaver AA; Stitzel JD
    Traffic Inj Prev; 2018 Feb; 19(sup1):S21-S28. PubMed ID: 29584493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burst fractures of the lumbar spine in frontal crashes.
    Kaufman RP; Ching RP; Willis MM; Mack CD; Gross JA; Bulger EM
    Accid Anal Prev; 2013 Oct; 59():153-63. PubMed ID: 23792614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of kinematics and injuries to restrained occupants in far-side crashes using full-scale vehicle and human body models.
    Arun MW; Umale S; Humm JR; Yoganandan N; Hadagali P; Pintar FA
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():116-23. PubMed ID: 27586112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injury prediction in a side impact crash using human body model simulation.
    Golman AJ; Danelson KA; Miller LE; Stitzel JD
    Accid Anal Prev; 2014 Mar; 64():1-8. PubMed ID: 24316501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical investigation of factors affecting lumbar spine injuries in frontal crashes.
    Tang L; Zheng J; Hu J
    Accid Anal Prev; 2020 Mar; 136():105400. PubMed ID: 31869694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor vehicle crash-related injury causation scenarios for spinal injuries in restrained children and adolescents.
    Zonfrillo MR; Locey CM; Scarfone SR; Arbogast KB
    Traffic Inj Prev; 2014; 15 Suppl 1(Suppl 1):S49-55. PubMed ID: 25307398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submarining sensitivity across varied seat configurations in autonomous driving system environment.
    Rawska K; Gepner B; Moreau D; Kerrigan JR
    Traffic Inj Prev; 2020 Oct; 21(sup1):S1-S6. PubMed ID: 32658549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Vehicle-Based Crash Severity Metrics.
    Tsoi AH; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S132-9. PubMed ID: 26436222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust human body model injury prediction in simulated side impact crashes.
    Golman AJ; Danelson KA; Stitzel JD
    Comput Methods Biomech Biomed Engin; 2016; 19(7):717-32. PubMed ID: 26158552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.
    Iwamoto M; Nakahira Y; Kimpara H
    Traffic Inj Prev; 2015; 16 Suppl 1():S36-48. PubMed ID: 26027974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thoracolumbar spine kinematics and injuries in frontal impacts with reclined occupants.
    Richardson R; Jayathirtha M; Chastain K; Donlon JP; Forman J; Gepner B; Östling M; Mroz K; Shaw G; Pipkorn B; Kerrigan J
    Traffic Inj Prev; 2020 Oct; 21(sup1):S66-S71. PubMed ID: 33206553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative evaluation of the occupant kinematic response of the THUMS 50th-percentile male model relative to PMHS laboratory rollover tests.
    Poulard D; Zhang Q; Cochran JR; Gepner B; Kerrigan J
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():101-8. PubMed ID: 27586110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spine and spinal cord injury in motor vehicle crashes: a function of change in velocity and energy dissipation on impact with respect to the direction of crash.
    Smith JA; Siegel JH; Siddiqi SQ
    J Trauma; 2005 Jul; 59(1):117-31. PubMed ID: 16096551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active muscle response contributes to increased injury risk of lower extremity in occupant-knee airbag interaction.
    Nie B; Sathyanarayan D; Ye X; Crandall JR; Panzer MB
    Traffic Inj Prev; 2018 Feb; 19(sup1):S76-S82. PubMed ID: 29584491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a heuristic relationship to predict the spinal injury during vertical impact for autonomous vehicle and bio environment.
    Sivasankari S; Balasubramanian V
    Comput Methods Programs Biomed; 2020 Nov; 196():105618. PubMed ID: 32603988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thoracic and lumbar spine responses in high-speed rear sled tests.
    Viano DC; Parenteau CS; Burnett R
    Traffic Inj Prev; 2018 Jul; 19(5):523-528. PubMed ID: 29494309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element model prediction of pulmonary contusion in vehicle-to-vehicle simulations of real-world crashes.
    Danelson KA; Stitzel JD
    Traffic Inj Prev; 2015; 16(6):627-36. PubMed ID: 25569549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.