These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 275862)

  • 1. Diabetic cataract formation: potential role of glycosylation of lens crystallins.
    Stevens VJ; Rouzer CA; Monnier VM; Cerami A
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2918-22. PubMed ID: 275862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus.
    Cerami A; Stevens VJ; Monnier VM
    Metabolism; 1979 Apr; 28(4 Suppl 1):431-7. PubMed ID: 122296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats.
    Perry RE; Swamy MS; Abraham EC
    Exp Eye Res; 1987 Feb; 44(2):269-82. PubMed ID: 3582512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging.
    Abraham EC; Swamy MS; Perry RE
    Prog Clin Biol Res; 1989; 304():123-39. PubMed ID: 2780679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential glycation of rat alpha-, beta- and gamma-crystallins.
    Swamy MS; Abraham EC
    Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonenzymatic glycosylation, sulfhydryl oxidation, and aggregation of lens proteins in experimental sugar cataracts.
    Monnier VM; Stevens VJ; Cerami A
    J Exp Med; 1979 Nov; 150(5):1098-107. PubMed ID: 501285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonenzymatic modification of lens crystallins by prednisolone induces sulfhydryl oxidation and aggregate formation: in vitro and in vivo studies.
    Bucala R; Manabe S; Urban RC; Cerami A
    Exp Eye Res; 1985 Sep; 41(3):353-63. PubMed ID: 4065253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of lens crystallin glycation and high molecular weight aggregate formation by aspirin in vitro and in vivo.
    Swamy MS; Abraham EC
    Invest Ophthalmol Vis Sci; 1989 Jun; 30(6):1120-6. PubMed ID: 2525117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycation-induced crosslinking of calf lens crystallins.
    van Boekel MA; Hoenders HJ
    Exp Eye Res; 1991 Jul; 53(1):89-94. PubMed ID: 1879506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis.
    Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts.
    Lyons TJ; Silvestri G; Dunn JA; Dyer DG; Baynes JW
    Diabetes; 1991 Aug; 40(8):1010-5. PubMed ID: 1907246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific detections of the early process of the glycation reaction by fructose and glucose in diabetic rat lens.
    Kawasaki Y; Fujii J; Miyazawa N; Hoshi A; Okado A; Tano Y; Taniguchi N
    FEBS Lett; 1998 Dec; 441(1):116-20. PubMed ID: 9877177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial effect of lysine and amino acids on cataractogenesis in experimental diabetes through possible antiglycation of lens proteins.
    Sulochana KN; Punitham R; Ramakrishnan S
    Exp Eye Res; 1998 Nov; 67(5):597-601. PubMed ID: 9878222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin.
    Kumar PA; Suryanarayana P; Reddy PY; Reddy GB
    Mol Vis; 2005 Jul; 11():561-8. PubMed ID: 16088325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal relationship between lens protein oxidation and cataract development in streptozotocin-induced diabetic rats.
    Kyselová Z; Garcia SJ; Gajdosíková A; Gajdosík A; Stefek M
    Physiol Res; 2005; 54(1):49-56. PubMed ID: 15717841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling cortical cataractogenesis 21: in diabetic rat lenses taurine supplementation partially reduces damage resulting from osmotic compensation leading to osmolyte loss and antioxidant depletion.
    Mitton KP; Linklater HA; Dzialoszynski T; Sanford SE; Starkey K; Trevithick JR
    Exp Eye Res; 1999 Sep; 69(3):279-89. PubMed ID: 10471336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the pyridoindole antioxidant stobadine on development of experimental diabetic cataract and on lens protein oxidation in rats: comparison with vitamin E and BHT.
    Kyselova Z; Gajdosik A; Gajdosikova A; Ulicna O; Mihalova D; Karasu C; Stefek M
    Mol Vis; 2005 Jan; 11():56-65. PubMed ID: 15682043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Camel lens crystallins glycosylation and high molecular weight aggregate formation in the presence of ferrous ions and glucose.
    Duhaiman AS; Rabbani N; Cotlier E
    Biochem Biophys Res Commun; 1990 Dec; 173(3):823-32. PubMed ID: 2268346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling cortical cataractogenesis: IX. Activity of vitamin E and esters in preventing cataracts and gamma-crystallin leakage from lenses in diabetic rats.
    Trevithick JR; Linklater HA; Mitton KP; Dzialoszynski T; Sanford SE
    Ann N Y Acad Sci; 1989; 570():358-71. PubMed ID: 2629605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.