BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27586331)

  • 1. Methods for Solving Highly Symmetric De Novo Designed Metalloproteins: Crystallographic Examination of a Novel Three-Stranded Coiled-Coil Structure Containing d-Amino Acids.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Methods Enzymol; 2016; 580():135-48. PubMed ID: 27586331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo protein design as a methodology for synthetic bioinorganic chemistry.
    Mocny CS; Pecoraro VL
    Acc Chem Res; 2015 Aug; 48(8):2388-96. PubMed ID: 26237119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.
    Plegaria JS; Dzul SP; Zuiderweg ER; Stemmler TL; Pecoraro VL
    Biochemistry; 2015 May; 54(18):2858-73. PubMed ID: 25790102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural comparisons of apo- and metalated three-stranded coiled coils clarify metal binding determinants in thiolate containing designed peptides.
    Chakraborty S; Touw DS; Peacock AF; Stuckey J; Pecoraro VL
    J Am Chem Soc; 2010 Sep; 132(38):13240-50. PubMed ID: 20825181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding metalloprotein folding using a de novo design strategy.
    Ghosh D; Pecoraro VL
    Inorg Chem; 2004 Dec; 43(25):7902-15. PubMed ID: 15578824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating electron-transfer functionality into synthetic metalloproteins from the bottom-up.
    Hong J; Kharenko OA; Ogawa MY
    Inorg Chem; 2006 Dec; 45(25):9974-84. PubMed ID: 17140193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd-thiolate cluster.
    Zaytsev DV; Morozov VA; Fan J; Zhu X; Mukherjee M; Ni S; Kennedy MA; Ogawa MY
    J Inorg Biochem; 2013 Feb; 119():1-9. PubMed ID: 23160144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-metal ion, Ni(II) and Cu(II), binding alpha-helical coiled coil peptide.
    Tanaka T; Mizuno T; Fukui S; Hiroaki H; Oku J; Kanaori K; Tajima K; Shirakawa M
    J Am Chem Soc; 2004 Nov; 126(43):14023-8. PubMed ID: 15506765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of second coordination sphere D-amino acids alters Cd(II) geometries in designed thiolate-rich proteins.
    Ruckthong L; Deb A; Hemmingsen L; Penner-Hahn JE; Pecoraro VL
    J Biol Inorg Chem; 2018 Jan; 23(1):123-135. PubMed ID: 29218636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Crystallographic Examination of Predisposition versus Preorganization in de Novo Designed Metalloproteins.
    Ruckthong L; Zastrow ML; Stuckey JA; Pecoraro VL
    J Am Chem Soc; 2016 Sep; 138(36):11979-88. PubMed ID: 27532255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils.
    Ruckthong L; Peacock AFA; Pascoe CE; Hemmingsen L; Stuckey JA; Pecoraro VL
    Chemistry; 2017 Jun; 23(34):8232-8243. PubMed ID: 28384393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Design of Xeno-Metallo Coiled Coils.
    Slope LN; Peacock AF
    Chem Asian J; 2016 Mar; 11(5):660-6. PubMed ID: 26592205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
    Plegaria JS; Pecoraro VL
    Methods Mol Biol; 2016; 1414():187-96. PubMed ID: 27094292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination.
    Gamble AJ; Peacock AF
    Methods Mol Biol; 2014; 1216():211-31. PubMed ID: 25213418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hg(II) binding to a weakly associated coiled coil nucleates an encoded metalloprotein fold: a kinetic analysis.
    Farrer BT; Pecoraro VL
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3760-5. PubMed ID: 12552128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-induced folding of a designed metalloprotein.
    Kharenko OA; Ogawa MY
    J Inorg Biochem; 2004 Nov; 98(11):1971-4. PubMed ID: 15522423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.