BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27586331)

  • 21. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.
    Sales M; Plecs JJ; Holton JM; Alber T
    Protein Sci; 2007 Oct; 16(10):2224-32. PubMed ID: 17766380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic model for the stabilization of trigonal thiolato mercury(II) in designed three-stranded coiled coils.
    Farrer BT; Harris NP; Balchus KE; Pecoraro VL
    Biochemistry; 2001 Dec; 40(48):14696-705. PubMed ID: 11724584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How Outer Coordination Sphere Modifications Can Impact Metal Structures in Proteins: A Crystallographic Evaluation.
    Ruckthong L; Stuckey JA; Pecoraro VL
    Chemistry; 2019 May; 25(27):6773-6787. PubMed ID: 30861211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.
    Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T
    Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and theoretical evaluation of multisite cadmium(II) exchange in designed three-stranded coiled-coil peptides.
    Chakraborty S; Iranzo O; Zuiderweg ER; Pecoraro VL
    J Am Chem Soc; 2012 Apr; 134(14):6191-203. PubMed ID: 22394049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide.
    Meier M; Lustig A; Aebi U; Burkhard P
    J Struct Biol; 2002; 137(1-2):65-72. PubMed ID: 12064934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, folding, and activities of metal-assembled coiled coil proteins.
    Doerr AJ; McLendon GL
    Inorg Chem; 2004 Dec; 43(25):7916-25. PubMed ID: 15578825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: effect of chain length on the kinetic and thermodynamic constants of binding.
    De Crescenzo G; Litowski JR; Hodges RS; O'Connor-McCourt MD
    Biochemistry; 2003 Feb; 42(6):1754-63. PubMed ID: 12578390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of interhelical ionic interactions in controlling protein folding and stability. De novo designed synthetic two-stranded alpha-helical coiled-coils.
    Zhou NE; Kay CM; Hodges RS
    J Mol Biol; 1994 Apr; 237(4):500-12. PubMed ID: 8151708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils.
    Ghosh D; Lee KH; Demeler B; Pecoraro VL
    Biochemistry; 2005 Aug; 44(31):10732-40. PubMed ID: 16060682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils.
    Dieckmann GR; McRorie DK; Lear JD; Sharp KA; DeGrado WF; Pecoraro VL
    J Mol Biol; 1998 Jul; 280(5):897-912. PubMed ID: 9671558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of the hydrophobic core of an alpha-helical coiled coil.
    Kiyokawa T; Kanaori K; Tajima K; Tanaka T
    Biopolymers; 2000; 55(5):407-14. PubMed ID: 11241216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing metal-protein interactions using a de novo design approach.
    Ghosh D; Pecoraro VL
    Curr Opin Chem Biol; 2005 Apr; 9(2):97-103. PubMed ID: 15811792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology.
    Fletcher JM; Boyle AL; Bruning M; Bartlett GJ; Vincent TL; Zaccai NR; Armstrong CT; Bromley EH; Booth PJ; Brady RL; Thomson AR; Woolfson DN
    ACS Synth Biol; 2012 Jun; 1(6):240-50. PubMed ID: 23651206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-selective metal binding by designed alpha-helical peptides.
    Matzapetakis M; Pecoraro VL
    J Am Chem Soc; 2005 Dec; 127(51):18229-33. PubMed ID: 16366576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving coiled-coil stability by optimizing ionic interactions.
    Burkhard P; Ivaninskii S; Lustig A
    J Mol Biol; 2002 May; 318(3):901-10. PubMed ID: 12054832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo design of a model peptide sequence to examine the effects of single amino acid substitutions in the hydrophobic core on both stability and oligomerization state of coiled-coils.
    Wagschal K; Tripet B; Hodges RS
    J Mol Biol; 1999 Jan; 285(2):785-803. PubMed ID: 9878444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR solution structure of a highly stable de novo heterodimeric coiled-coil.
    Lindhout DA; Litowski JR; Mercier P; Hodges RS; Sykes BD
    Biopolymers; 2004 Dec; 75(5):367-75. PubMed ID: 15457434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of chain length on coiled-coil stability: decreasing stability with increasing chain length.
    Kwok SC; Hodges RS
    Biopolymers; 2004; 76(5):378-90. PubMed ID: 15372485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.