BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 27586331)

  • 41. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima.
    Lupas A; Müller S; Goldie K; Engel AM; Engel A; Baumeister W
    J Mol Biol; 1995 Apr; 248(1):180-9. PubMed ID: 7731042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding of Cu(II) or Zn(II) in a de novo designed triple-stranded alpha-helical coiled-coil toward a prototype for a metalloenzyme.
    Kiyokawa T; Kanaori K; Tajima K; Koike M; Mizuno T; Oku JI; Tanaka T
    J Pept Res; 2004 Apr; 63(4):347-53. PubMed ID: 15102052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rational design of a three-heptad coiled-coil protein and comparison by molecular dynamics simulation with the GCN4 coiled coil: presence of interior three-center hydrogen bonds.
    Rozzelle JE; Tropsha A; Erickson BW
    Protein Sci; 1994 Feb; 3(2):345-55. PubMed ID: 8003969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.
    Hillar A; Tripet B; Zoetewey D; Wood JM; Hodges RS; Boggs JM
    Biochemistry; 2003 Dec; 42(51):15170-8. PubMed ID: 14690427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure-based engineering of internal cavities in coiled-coil peptides.
    Yadav MK; Redman JE; Leman LJ; Alvarez-Gutiérrez JM; Zhang Y; Stout CD; Ghadiri MR
    Biochemistry; 2005 Jul; 44(28):9723-32. PubMed ID: 16008357
    [TBL] [Abstract][Full Text] [Related]  

  • 48. X-ray crystallography and biological metal centers: is seeing believing?
    Sommerhalter M; Lieberman RL; Rosenzweig AC
    Inorg Chem; 2005 Feb; 44(4):770-8. PubMed ID: 15859245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of metal coordination number in de novo designed peptides through subtle sequence modifications.
    Lee KH; Matzapetakis M; Mitra S; Marsh EN; Pecoraro VL
    J Am Chem Soc; 2004 Aug; 126(30):9178-9. PubMed ID: 15281796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The coiled-coil trigger site of the rod domain of cortexillin I unveils a distinct network of interhelical and intrahelical salt bridges.
    Burkhard P; Kammerer RA; Steinmetz MO; Bourenkov GP; Aebi U
    Structure; 2000 Mar; 8(3):223-30. PubMed ID: 10745004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Socket: a program for identifying and analysing coiled-coil motifs within protein structures.
    Walshaw J; Woolfson DN
    J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster.
    Chino M; Zhang SQ; Pirro F; Leone L; Maglio O; Lombardi A; DeGrado WF
    Biopolymers; 2018 Aug; 109(10):e23339. PubMed ID: 30203532
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies.
    Ogihara NL; Weiss MS; Degrado WF; Eisenberg D
    Protein Sci; 1997 Jan; 6(1):80-8. PubMed ID: 9007979
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of the binding of cadmium(II), mercury(II), and arsenic(III) to the de novo designed peptides TRI L12C and TRI L16C.
    Matzapetakis M; Farrer BT; Weng TC; Hemmingsen L; Penner-Hahn JE; Pecoraro VL
    J Am Chem Soc; 2002 Jul; 124(27):8042-54. PubMed ID: 12095348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors.
    Lu Y
    Curr Opin Chem Biol; 2005 Apr; 9(2):118-26. PubMed ID: 15811795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. X-ray Crystallographic Structure and Solution Behavior of an Antiparallel Coiled-Coil Hexamer Formed by de Novo Peptides.
    Spencer RK; Hochbaum AI
    Biochemistry; 2016 Jun; 55(23):3214-23. PubMed ID: 27192036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Observation of glycine zipper and unanticipated occurrence of ambidextrous helices in the crystal structure of a chiral undecapeptide.
    Acharya R; Gupta M; Ramakumar S; Ramagopal UA; Chauhan VS
    BMC Struct Biol; 2007 Aug; 7():51. PubMed ID: 17678528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of the side chain length of Asp and Glu on coordination structure of Cu(2+) in a de novo designed protein.
    Shiga D; Nakane D; Inomata T; Masuda H; Oda M; Noda M; Uchiyama S; Fukui K; Takano Y; Nakamura H; Mizuno T; Tanaka T
    Biopolymers; 2009 Nov; 91(11):907-16. PubMed ID: 19598226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using diastereopeptides to control metal ion coordination in proteins.
    Peacock AF; Hemmingsen L; Pecoraro VL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16566-71. PubMed ID: 18940928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
    Hansen WA; Mills JH; Khare SD
    Methods Mol Biol; 2016; 1414():173-85. PubMed ID: 27094291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.