BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27586341)

  • 1. De Novo Construction of Redox Active Proteins.
    Moser CC; Sheehan MM; Ennist NM; Kodali G; Bialas C; Englander MT; Discher BM; Dutton PL
    Methods Enzymol; 2016; 580():365-88. PubMed ID: 27586341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilic to amphiphilic design in redox protein maquettes.
    Discher BM; Koder RL; Moser CC; Dutton PL
    Curr Opin Chem Biol; 2003 Dec; 7(6):741-8. PubMed ID: 14644184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies.
    Solomon LA; Witten J; Kodali G; Moser CC; Dutton PL
    J Phys Chem B; 2022 Oct; 126(41):8177-8187. PubMed ID: 36219580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome.
    Kalsbeck WA; Robertson DE; Pandey RK; Smith KM; Dutton PL; Bocian DF
    Biochemistry; 1996 Mar; 35(11):3429-38. PubMed ID: 8639493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proof of principle in a de novo designed protein maquette: an allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle.
    Grosset AM; Gibney BR; Rabanal F; Moser CC; Dutton PL
    Biochemistry; 2001 May; 40(18):5474-87. PubMed ID: 11331012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the assembly of heme cofactors in man-made proteins.
    Solomon LA; Kodali G; Moser CC; Dutton PL
    J Am Chem Soc; 2014 Feb; 136(8):3192-9. PubMed ID: 24495285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles design of a core bioenergetic transmembrane electron-transfer protein.
    Goparaju G; Fry BA; Chobot SE; Wiedman G; Moser CC; Leslie Dutton P; Discher BM
    Biochim Biophys Acta; 2016 May; 1857(5):503-512. PubMed ID: 26672896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and engineering of a man-made diffusive electron-transport protein.
    Fry BA; Solomon LA; Leslie Dutton P; Moser CC
    Biochim Biophys Acta; 2016 May; 1857(5):513-521. PubMed ID: 26423266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes.
    Kurnikov IV; Ratner MA; Pacheco AA
    Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The HP-1 maquette: from an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange.
    Huang SS; Koder RL; Lewis M; Wand AJ; Dutton PL
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5536-41. PubMed ID: 15056758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Construction of Compact de Novo-Designed Biliverdin-Binding Proteins.
    Sheehan MM; Magaraci MS; Kuznetsov IA; Mancini JA; Kodali G; Moser CC; Dutton PL; Chow BY
    Biochemistry; 2018 Dec; 57(49):6752-6756. PubMed ID: 30468389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring amino-acid radical chemistry: protein engineering and de novo design.
    Westerlund K; Berry BW; Privett HK; Tommos C
    Biochim Biophys Acta; 2005 Feb; 1707(1):103-16. PubMed ID: 15721609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elementary tetrahelical protein design for diverse oxidoreductase functions.
    Farid TA; Kodali G; Solomon LA; Lichtenstein BR; Sheehan MM; Fry BA; Bialas C; Ennist NM; Siedlecki JA; Zhao Z; Stetz MA; Valentine KG; Anderson JLR; Wand AJ; Discher BM; Moser CC; Dutton PL
    Nat Chem Biol; 2013 Dec; 9(12):826-833. PubMed ID: 24121554
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    D'Souza A; Bhattacharjya S
    Biochemistry; 2021 Feb; 60(6):431-439. PubMed ID: 33533248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.