BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27586341)

  • 21. Expression and In Vivo Loading of De Novo Proteins with Tetrapyrrole Cofactors.
    Curnow P; Anderson JLR
    Methods Mol Biol; 2022; 2397():137-155. PubMed ID: 34813063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modular synthesis of de novo-designed metalloproteins for light-induced electron transfer.
    Rau HK; DeJonge N; Haehnel W
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11526-31. PubMed ID: 9751699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of dinuclear manganese cofactors for bacterial reaction centers.
    Olson TL; Espiritu E; Edwardraja S; Simmons CR; Williams JC; Ghirlanda G; Allen JP
    Biochim Biophys Acta; 2016 May; 1857(5):539-547. PubMed ID: 26392146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heme redox potential control in de novo designed four-alpha-helix bundle proteins.
    Shifman JM; Gibney BR; Sharp RE; Dutton PL
    Biochemistry; 2000 Dec; 39(48):14813-21. PubMed ID: 11101297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational control of cofactors in nature - the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles.
    Senge MO; MacGowan SA; O'Brien JM
    Chem Commun (Camb); 2015 Dec; 51(96):17031-63. PubMed ID: 26482230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes.
    Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P
    Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein.
    Blumberger J; Klein ML
    J Am Chem Soc; 2006 Oct; 128(42):13854-67. PubMed ID: 17044714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo heme proteins from designed combinatorial libraries.
    Rojas NR; Kamtekar S; Simons CT; McLean JE; Vogel KM; Spiro TG; Farid RS; Hecht MH
    Protein Sci; 1997 Dec; 6(12):2512-24. PubMed ID: 9416601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histidine placement in de novo-designed heme proteins.
    Gibney BR; Dutton PL
    Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of amphiphilic protein maquettes: controlling assembly, membrane insertion, and cofactor interactions.
    Discher BM; Noy D; Strzalka J; Ye S; Moser CC; Lear JD; Blasie JK; Dutton PL
    Biochemistry; 2005 Sep; 44(37):12329-43. PubMed ID: 16156646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo design of a redox-active minimal rubredoxin mimic.
    Nanda V; Rosenblatt MM; Osyczka A; Kono H; Getahun Z; Dutton PL; Saven JG; Degrado WF
    J Am Chem Soc; 2005 Apr; 127(16):5804-5. PubMed ID: 15839675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design principles for chlorophyll-binding sites in helical proteins.
    Braun P; Goldberg E; Negron C; von Jan M; Xu F; Nanda V; Koder RL; Noy D
    Proteins; 2011 Feb; 79(2):463-76. PubMed ID: 21117078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo design of an artificial bis[4Fe-4S] binding protein.
    Roy A; Sarrou I; Vaughn MD; Astashkin AV; Ghirlanda G
    Biochemistry; 2013 Oct; 52(43):7586-94. PubMed ID: 24090184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Aptamer Binding on the Electron-Transfer Properties of Redox Cofactors.
    Emahi I; Gruenke PR; Baum DA
    J Mol Evol; 2015 Dec; 81(5-6):186-93. PubMed ID: 26498628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational design of four-helix bundle proteins that bind nonbiological cofactors.
    Lehmann A; Saven JG
    Biotechnol Prog; 2008; 24(1):74-9. PubMed ID: 18197672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The function and characteristics of tyrosyl radical cofactors.
    Hoganson CW; Tommos C
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):116-22. PubMed ID: 15100023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of Redox-Active Peptides: Towards Functional Materials.
    Sommer DJ; Alcala-Torano R; Dizicheh ZB; Ghirlanda G
    Adv Exp Med Biol; 2016; 940():215-243. PubMed ID: 27677515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing Covalently Linked Heterodimeric Four-Helix Bundles.
    Chino M; Leone L; Maglio O; Lombardi A
    Methods Enzymol; 2016; 580():471-99. PubMed ID: 27586346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo design: backbone conformational constraints in nucleating helices and beta-hairpins.
    Balaram P
    J Pept Res; 1999 Sep; 54(3):195-9. PubMed ID: 10517156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering of the hydrophobic core of an alpha-helical coiled coil.
    Kiyokawa T; Kanaori K; Tajima K; Tanaka T
    Biopolymers; 2000; 55(5):407-14. PubMed ID: 11241216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.