BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27586363)

  • 1. Structure-based model profiles affinity constant of drugs with hPEPT1 for rapid virtual screening of hPEPT1's substrate.
    Sun L; Meng S
    SAR QSAR Environ Res; 2016 Aug; 27(8):637-52. PubMed ID: 27586363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter: implications for design of hPEPT1 targeted prodrugs.
    Våbenø J; Nielsen CU; Steffansen B; Lejon T; Sylte I; Jørgensen FS; Luthman K
    Bioorg Med Chem; 2005 Mar; 13(6):1977-88. PubMed ID: 15727852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Modulation of the Human Oligopeptide Transporter 1, hPepT1.
    Colas C; Masuda M; Sugio K; Miyauchi S; Hu Y; Smith DE; Schlessinger A
    Mol Pharm; 2017 Dec; 14(12):4685-4693. PubMed ID: 29111754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and pharmacophore-based discovery of novel hPEPT1 inhibitors.
    Ekins S; Johnston JS; Bahadduri P; D'Souza VM; Ray A; Chang C; Swaan PW
    Pharm Res; 2005 Apr; 22(4):512-7. PubMed ID: 15846457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative structure-activity relationship for translocation of tripeptides via the human proton-coupled peptide transporter, hPEPT1 (SLC15A1).
    Omkvist DH; Larsen SB; Nielsen CU; Steffansen B; Olsen L; Jørgensen FS; Brodin B
    AAPS J; 2010 Sep; 12(3):385-96. PubMed ID: 20449699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR models for the human H(+)/peptide symporter, hPEPT1: affinity prediction using alignment-independent descriptors.
    Larsen SB; Jørgensen FS; Olsen L
    J Chem Inf Model; 2008 Jan; 48(1):233-41. PubMed ID: 18092768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipeptide derivatives of AZT: synthesis, chemical stability, activation in human plasma, hPEPT1 affinity, and antiviral activity.
    Santos C; Morais J; Gouveia L; de Clercq E; Pannecouque C; Nielsen CU; Steffansen B; Moreira R; Gomes P
    ChemMedChem; 2008 Jun; 3(6):970-8. PubMed ID: 18389514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural requirements for the substrates of the H+/peptide cotransporter PEPT2 determined by three-dimensional quantitative structure-activity relationship analysis.
    Biegel A; Gebauer S; Brandsch M; Neubert K; Thondorf I
    J Med Chem; 2006 Jul; 49(14):4286-96. PubMed ID: 16821788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and evaluation of tripeptidic promoieties targeting the intestinal peptide transporter hPEPT1.
    Thorn K; Andersen R; Christensen J; Jakobsen P; Nielsen CU; Steffansen B; Begtrup M
    ChemMedChem; 2007 Apr; 2(4):479-87. PubMed ID: 17407174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1.
    Andersen R; Jørgensen FS; Olsen L; Våbenø J; Thorn K; Nielsen CU; Steffansen B
    Pharm Res; 2006 Mar; 23(3):483-92. PubMed ID: 16489544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of enzymatically stable dipeptides for enhancement of intestinal permeability. Synthesis and in vitro evaluation of dipeptide-coupled compounds.
    Friedrichsen GM; Jakobsen P; Taub M; Begtrup M
    Bioorg Med Chem; 2001 Oct; 9(10):2625-32. PubMed ID: 11557350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptidomimetic ketomethylene isosteres as pro-moieties for drug transport via the human intestinal di-/tripeptide transporter hPEPT1: design, synthesis, stability, and biological investigations.
    Våbenø J; Nielsen CU; Ingebrigtsen T; Lejon T; Steffansen B; Luthman K
    J Med Chem; 2004 Sep; 47(19):4755-65. PubMed ID: 15341490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the intestinal peptide transporter hPepT1 and analysis of its transport capacities by docking and pharmacophore mapping.
    Pedretti A; De Luca L; Marconi C; Negrisoli G; Aldini G; Vistoli G
    ChemMedChem; 2008 Dec; 3(12):1913-21. PubMed ID: 18979492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of ligands for the human intestinal Di-/Tripeptide transporter (hPEPT1) using a QSAR-assisted virtual screening strategy.
    Larsen SB; Omkvist DH; Brodin B; Nielsen CU; Steffansen B; Olsen L; Jørgensen FS
    ChemMedChem; 2009 Sep; 4(9):1439-45. PubMed ID: 19557803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity and translocation relationships via hPEPT1 of H-X aa-Ser-OH dipeptides: evaluation of H-Phe-Ser-OH as a pro-moiety for ibuprofen and benzoic acid prodrugs.
    Omkvist DH; Trangbæk DJ; Mildon J; Paine JS; Brodin B; Begtrup M; Nielsen CU
    Eur J Pharm Biopharm; 2011 Feb; 77(2):327-31. PubMed ID: 21147219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1).
    Thondorf I; Voigt V; Schäfer S; Gebauer S; Zebisch K; Laug L; Brandsch M
    Bioorg Med Chem; 2011 Nov; 19(21):6409-18. PubMed ID: 21955456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line.
    Guo A; Hu P; Balimane PV; Leibach FH; Sinko PJ
    J Pharmacol Exp Ther; 1999 Apr; 289(1):448-54. PubMed ID: 10087037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the myc/His-tagged human peptide transporter hPEPT1 in yeast for protein purification and functional analysis.
    Theis S; Döring F; Daniel H
    Protein Expr Purif; 2001 Aug; 22(3):436-42. PubMed ID: 11483006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid ester prodrugs of the antiviral agent 2-bromo-5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole as potential substrates of hPEPT1 transporter.
    Song X; Vig BS; Lorenzi PL; Drach JC; Townsend LB; Amidon GL
    J Med Chem; 2005 Feb; 48(4):1274-7. PubMed ID: 15715497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of in silico and in vitro tools for scaffold optimization during drug discovery: predicting P-glycoprotein efflux.
    Desai PV; Sawada GA; Watson IA; Raub TJ
    Mol Pharm; 2013 Apr; 10(4):1249-61. PubMed ID: 23363443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.