These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27586480)

  • 1. Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications.
    Singh A; Dutta MK; Sharma DK
    Comput Methods Programs Biomed; 2016 Oct; 135():61-75. PubMed ID: 27586480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.
    Singh A; Dutta MK
    Int J Med Inform; 2017 Dec; 108():110-124. PubMed ID: 29132616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.
    Memari N; Ramli AR; Bin Saripan MI; Mashohor S; Moghbel M
    PLoS One; 2017; 12(12):e0188939. PubMed ID: 29228036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Hidden Markov Model based intelligent blood vessel detection of fundus images.
    Hassan M; Amin M; Murtza I; Khan A; Chaudhry A
    Comput Methods Programs Biomed; 2017 Nov; 151():193-201. PubMed ID: 28947001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Automatic detection of vessels in color fundus images].
    Jiménez S; Alemany P; Fondón I; Foncubierta A; Acha B; Serrano C
    Arch Soc Esp Oftalmol; 2010 Mar; 85(3):103-9. PubMed ID: 20619121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images.
    Marin D; Gegundez-Arias ME; Suero A; Bravo JM
    Comput Methods Programs Biomed; 2015 Feb; 118(2):173-85. PubMed ID: 25433912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal dimension of retinal vasculature as an image quality metric for automated fundus image analysis systems.
    Lyu X; Jajal P; Tahir MZ; Zhang S
    Sci Rep; 2022 Jul; 12(1):11868. PubMed ID: 35831401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Unsupervised Approach for Extraction of Blood Vessels from Fundus Images.
    Dash J; Bhoi N
    J Digit Imaging; 2018 Dec; 31(6):857-868. PubMed ID: 29700648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2015 May; 19(3):1118-28. PubMed ID: 25014980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach.
    Welfer D; Scharcanski J; Kitamura CM; Dal Pizzol MM; Ludwig LW; Marinho DR
    Comput Biol Med; 2010 Feb; 40(2):124-37. PubMed ID: 20045104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
    Singh A; Dutta MK; ParthaSarathi M; Uher V; Burget R
    Comput Methods Programs Biomed; 2016 Feb; 124():108-20. PubMed ID: 26574297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images.
    Hervella ÁS; Rouco J; Novo J; Penedo MG; Ortega M
    Comput Methods Programs Biomed; 2020 Apr; 186():105201. PubMed ID: 31783244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and localization of fovea on colour fundus images using blur scales.
    Ganesan K; Acharya RU; Chua CK; Laude A
    Proc Inst Mech Eng H; 2014 Sep; 228(9):962-70. PubMed ID: 25234036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative Vessel Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image processing pipeline for the detection of blood flow through retinal vessels with subpixel accuracy in fundus images.
    Czepita M; Fabijańska A
    Comput Methods Programs Biomed; 2021 Sep; 208():106240. PubMed ID: 34198018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and Enhancing Low-Quality Retinal Fundus Images.
    Shen Z; Fu H; Shen J; Shao L
    IEEE Trans Med Imaging; 2021 Mar; 40(3):996-1006. PubMed ID: 33296301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric model fitting-based approach for retinal blood vessel caliber estimation in eye fundus images.
    Araújo T; Mendonça AM; Campilho A
    PLoS One; 2018; 13(4):e0194702. PubMed ID: 29668759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vessel extraction from non-fluorescein fundus images using orientation-aware detector.
    Yin B; Li H; Sheng B; Hou X; Chen Y; Wu W; Li P; Shen R; Bao Y; Jia W
    Med Image Anal; 2015 Dec; 26(1):232-42. PubMed ID: 26474120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of the blood vessels and optic disk in retinal images.
    Salazar-Gonzalez A; Kaba D; Li Y; Liu X
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1874-86. PubMed ID: 25265617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.