These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27586594)

  • 21. Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
    Thompson D; Regev A; Roy S
    Annu Rev Cell Dev Biol; 2015; 31():399-428. PubMed ID: 26355593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of the core and extended regulons of global transcription factors.
    Dufour YS; Kiley PJ; Donohue TJ
    PLoS Genet; 2010 Jul; 6(7):e1001027. PubMed ID: 20661434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refining regulatory networks through phylogenetic transfer of information.
    Zhang X; Moret BM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1032-45. PubMed ID: 22547434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative genomics of the DNA damage-inducible network in the Patescibacteria.
    Sánchez-Osuna M; Barbé J; Erill I
    Environ Microbiol; 2017 Sep; 19(9):3465-3474. PubMed ID: 28618189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring the transcriptional network of Bacillus subtilis.
    Fadda A; Fierro AC; Lemmens K; Monsieurs P; Engelen K; Marchal K
    Mol Biosyst; 2009 Dec; 5(12):1840-52. PubMed ID: 20023724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomics of regulation of heavy metal resistance in Eubacteria.
    Permina EA; Kazakov AE; Kalinina OV; Gelfand MS
    BMC Microbiol; 2006 Jun; 6():49. PubMed ID: 16753059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial regulatory networks are extremely flexible in evolution.
    Lozada-Chávez I; Janga SC; Collado-Vides J
    Nucleic Acids Res; 2006; 34(12):3434-45. PubMed ID: 16840530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting cis-acting elements of Lactobacillus plantarum by comparative genomics with different taxonomic subgroups.
    Wels M; Francke C; Kerkhoven R; Kleerebezem M; Siezen RJ
    Nucleic Acids Res; 2006; 34(7):1947-58. PubMed ID: 16614445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon.
    Erill I; Escribano M; Campoy S; Barbé J
    Bioinformatics; 2003 Nov; 19(17):2225-36. PubMed ID: 14630651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A ChIP-Seq benchmark shows that sequence conservation mainly improves detection of strong transcription factor binding sites.
    Håndstad T; Rye MB; Drabløs F; Sætrom P
    PLoS One; 2011 Apr; 6(4):e18430. PubMed ID: 21533218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian inference method for the analysis of transcriptional regulatory networks in metagenomic data.
    Hobbs ET; Pereira T; O'Neill PK; Erill I
    Algorithms Mol Biol; 2016; 11():19. PubMed ID: 27398089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data.
    Worby CJ; Lipsitch M; Hanage WP
    PLoS Comput Biol; 2014 Mar; 10(3):e1003549. PubMed ID: 24675511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator.
    Kohl TA; Baumbach J; Jungwirth B; Pühler A; Tauch A
    J Biotechnol; 2008 Jul; 135(4):340-50. PubMed ID: 18573287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RegPrecise web services interface: programmatic access to the transcriptional regulatory interactions in bacteria reconstructed by comparative genomics.
    Novichkov PS; Brettin TS; Novichkova ES; Dehal PS; Arkin AP; Dubchak I; Rodionov DA
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W604-8. PubMed ID: 22700702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovering motifs from biased genomes: application of signal correction.
    Hasan S; Schreiber M
    Nucleic Acids Res; 2006; 34(18):5124-32. PubMed ID: 16990246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus.
    Alkema WB; Lenhard B; Wasserman WW
    Genome Res; 2004 Jul; 14(7):1362-73. PubMed ID: 15231752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracing the phylogenetic history of the Crl regulon through the Bacteria and Archaea genomes.
    Santos-Zavaleta A; Pérez-Rueda E; Sánchez-Pérez M; Velázquez-Ramírez DA; Collado-Vides J
    BMC Genomics; 2019 Apr; 20(1):299. PubMed ID: 30991941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria.
    Kazakov AE; Rodionov DA; Alm E; Arkin AP; Dubchak I; Gelfand MS
    J Bacteriol; 2009 Jan; 191(1):52-64. PubMed ID: 18820024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DMINDA 2.0: integrated and systematic views of regulatory DNA motif identification and analyses.
    Yang J; Chen X; McDermaid A; Ma Q
    Bioinformatics; 2017 Aug; 33(16):2586-2588. PubMed ID: 28419194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What determines the assembly of transcriptional network motifs in Escherichia coli?
    Camas FM; Poyatos JF
    PLoS One; 2008; 3(11):e3657. PubMed ID: 18987754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.