These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 27586620)
1. Design and implementation of grid multi-scroll fractional-order chaotic attractors. Chen L; Pan W; Wu R; Tenreiro Machado JA; Lopes AM Chaos; 2016 Aug; 26(8):084303. PubMed ID: 27586620 [TBL] [Abstract][Full Text] [Related]
2. Multi-scroll hidden attractors with two stable equilibrium points. Deng Q; Wang C Chaos; 2019 Sep; 29(9):093112. PubMed ID: 31575154 [TBL] [Abstract][Full Text] [Related]
3. Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. Deng W; Lü J Chaos; 2006 Dec; 16(4):043120. PubMed ID: 17199398 [TBL] [Abstract][Full Text] [Related]
4. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system. Wang C; Liu X; Xia H Chaos; 2017 Mar; 27(3):033114. PubMed ID: 28364774 [TBL] [Abstract][Full Text] [Related]
5. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Yuan F; Wang G; Wang X Chaos; 2016 Jul; 26(7):073107. PubMed ID: 27475067 [TBL] [Abstract][Full Text] [Related]
6. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
7. Generating multi-double-scroll attractors via nonautonomous approach. Hong Q; Xie Q; Shen Y; Wang X Chaos; 2016 Aug; 26(8):083110. PubMed ID: 27586606 [TBL] [Abstract][Full Text] [Related]
9. A simple no-equilibrium chaotic system with only one signum function for generating multidirectional variable hidden attractors and its hardware implementation. Zhang S; Wang X; Zeng Z Chaos; 2020 May; 30(5):053129. PubMed ID: 32491881 [TBL] [Abstract][Full Text] [Related]
10. Multi-scroll attractor and its broken coexisting attractors in cyclic memristive neural network. Lai Q; Chen Y Chaos; 2023 Aug; 33(8):. PubMed ID: 38060791 [TBL] [Abstract][Full Text] [Related]
11. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability. Zhang S; Zeng Y; Li Z; Wang M; Xiong L Chaos; 2018 Jan; 28(1):013113. PubMed ID: 29390621 [TBL] [Abstract][Full Text] [Related]
12. A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors. Munoz-Pacheco JM; Zambrano-Serrano E; Volos C; Jafari S; Kengne J; Rajagopal K Entropy (Basel); 2018 Jul; 20(8):. PubMed ID: 33265653 [TBL] [Abstract][Full Text] [Related]
13. n-scroll chaotic attractors from a first-order time-delay differential equation. Yalçin ME; Ozoguz S Chaos; 2007 Sep; 17(3):033112. PubMed ID: 17902994 [TBL] [Abstract][Full Text] [Related]
14. Star Memristive Neural Network: Dynamics Analysis, Circuit Implementation, and Application in a Color Cryptosystem. Fu S; Yao Z; Qian C; Wang X Entropy (Basel); 2023 Aug; 25(9):. PubMed ID: 37761560 [TBL] [Abstract][Full Text] [Related]
15. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems. Liu Y; Guan J; Ma C; Guo S Chaos; 2016 Aug; 26(8):084307. PubMed ID: 27586624 [TBL] [Abstract][Full Text] [Related]
16. Chaotic attractors that exist only in fractional-order case. Matouk AE J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217 [TBL] [Abstract][Full Text] [Related]
17. Analysis and circuit implementation of a non-equilibrium fractional-order chaotic system with hidden multistability and special offset-boosting. Yan S; Wang E; Wang Q Chaos; 2023 Mar; 33(3):033107. PubMed ID: 37003813 [TBL] [Abstract][Full Text] [Related]
18. A new method for generating chaotic system with arbitrary shaped distributed attractors. Su Q; Wang C; Chen H; Sun J; Zhang X Chaos; 2018 Jul; 28(7):073106. PubMed ID: 30070490 [TBL] [Abstract][Full Text] [Related]
19. Dynamical behaviors, circuit design, and synchronization of a novel symmetric chaotic system with coexisting attractors. Qiu H; Xu X; Jiang Z; Sun K; Cao C Sci Rep; 2023 Feb; 13(1):1893. PubMed ID: 36732538 [TBL] [Abstract][Full Text] [Related]
20. Characterization of multiscroll attractors using Lyapunov exponents and Lagrangian coherent structures. Fazanaro FI; Soriano DC; Suyama R; Attux R; Madrid MK; de Oliveira JR Chaos; 2013 Jun; 23(2):023105. PubMed ID: 23822470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]