These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Wu Q; Song J; Sun Y; Suo F; Li C; Luo H; Liu Y; Li Y; Zhang X; Yao H; Li X; Hu S; Sun C Physiol Plant; 2010 Feb; 138(2):134-49. PubMed ID: 19947964 [TBL] [Abstract][Full Text] [Related]
3. [Screening and identification of novel genes involved in biosynthesis of ginsenoside in Panax ginseng plant]. Luo ZY; Lu QH; Liu SP; Chen XH; Luo JQ; Tan LJ; Hu WX Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Jun; 35(6):554-60. PubMed ID: 12796817 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Kim MK; Lee BS; In JG; Sun H; Yoon JH; Yang DC Plant Cell Rep; 2006 Jun; 25(6):599-606. PubMed ID: 16397780 [TBL] [Abstract][Full Text] [Related]
5. Identification of differentially-expressed genes potentially implicated in drought response in pitaya (Hylocereus undatus) by suppression subtractive hybridization and cDNA microarray analysis. Fan QJ; Yan FX; Qiao G; Zhang BX; Wen XP Gene; 2014 Jan; 533(1):322-31. PubMed ID: 24076355 [TBL] [Abstract][Full Text] [Related]
6. Differentially expressed transcripts from leaf and root tissue of Chlorophytum borivilianum: a plant with high medicinal value. Kumar S; Kalra S; Kumar S; Kaur J; Singh K Gene; 2012 Dec; 511(1):79-87. PubMed ID: 23000016 [TBL] [Abstract][Full Text] [Related]
7. Time-Course Transcriptome Analysis Reveals Resistance Genes of Panax ginseng Induced by Cylindrocarpon destructans Infection Using RNA-Seq. Gao Y; He X; Wu B; Long Q; Shao T; Wang Z; Wei J; Li Y; Ding W PLoS One; 2016; 11(2):e0149408. PubMed ID: 26890788 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the Panax ginseng stem/leaf transcriptome and gene expression during the leaf expansion period. Liu S; Liu M; Wang S; Lin Y; Zhang H; Wang Q; Zhao Y Mol Med Rep; 2017 Nov; 16(5):6396-6404. PubMed ID: 28849068 [TBL] [Abstract][Full Text] [Related]
9. Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Jung JD; Park HW; Hahn Y; Hur CG; In DS; Chung HJ; Liu JR; Choi DW Plant Cell Rep; 2003 Oct; 22(3):224-30. PubMed ID: 12920566 [TBL] [Abstract][Full Text] [Related]
10. De novo assembly and comparative analysis of root transcriptomes from different varieties of Panax ginseng C. A. Meyer grown in different environments. Zhen G; Zhang L; Du Y; Yu R; Liu X; Cao F; Chang Q; Deng X; Xia M; He H Sci China Life Sci; 2015 Nov; 58(11):1099-110. PubMed ID: 26563176 [TBL] [Abstract][Full Text] [Related]
11. Suppression subtractive hybridization-mediated transcriptome analysis from multiple tissues of aspen (Populus tremuloides) altered in phenylpropanoid metabolism. Ranjan P; Kao YY; Jiang H; Joshi CP; Harding SA; Tsai CJ Planta; 2004 Aug; 219(4):694-704. PubMed ID: 15146331 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. Li C; Zhu Y; Guo X; Sun C; Luo H; Song J; Li Y; Wang L; Qian J; Chen S BMC Genomics; 2013 Apr; 14():245. PubMed ID: 23577925 [TBL] [Abstract][Full Text] [Related]
13. The Spatial and Temporal Transcriptomic Landscapes of Ginseng, Panax ginseng C. A. Meyer. Wang K; Jiang S; Sun C; Lin Y; Yin R; Wang Y; Zhang M Sci Rep; 2015 Dec; 5():18283. PubMed ID: 26655864 [TBL] [Abstract][Full Text] [Related]
14. Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project. Fernández P; Paniego N; Lew S; Hopp HE; Heinz RA BMC Genomics; 2003 Sep; 4(1):40. PubMed ID: 14519210 [TBL] [Abstract][Full Text] [Related]
15. [Construction of suppression subtractive hybridization cDNA library of half-blood males of Dermacentor silvarum and analysis of differentially expressed genes]. Liu Q; Wang WL; Meng QF; Xu Z; Cui J; Liu XX; Wang WL Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2014 Aug; 32(4):274-9. PubMed ID: 25518590 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. Liu MH; Yang BR; Cheung WF; Yang KY; Zhou HF; Kwok JS; Liu GC; Li XF; Zhong S; Lee SM; Tsui SK BMC Genomics; 2015 Apr; 16(1):265. PubMed ID: 25886736 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive analysis of Panax ginseng root transcriptomes. Jayakodi M; Lee SC; Lee YS; Park HS; Kim NH; Jang W; Lee HO; Joh HJ; Yang TJ BMC Plant Biol; 2015 Jun; 15():138. PubMed ID: 26063328 [TBL] [Abstract][Full Text] [Related]
18. SMRT- and Illumina-based RNA-seq analyses unveil the ginsinoside biosynthesis and transcriptomic complexity in Panax notoginseng. Zhang D; Li W; Chen ZJ; Wei FG; Liu YL; Gao LZ Sci Rep; 2020 Sep; 10(1):15310. PubMed ID: 32943706 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. Xue L; He Z; Bi X; Xu W; Wei T; Wu S; Hu S BMC Genomics; 2019 May; 20(1):383. PubMed ID: 31101014 [TBL] [Abstract][Full Text] [Related]
20. Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Sathiyamoorthy S; In JG; Gayathri S; Kim YJ; Yang DC Mol Biol Rep; 2010 Oct; 37(7):3465-72. PubMed ID: 19943115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]