These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 27586695)

  • 1. Population viability analysis of plant and animal populations with stochastic integral projection models.
    Jaffré M; Le Galliard JF
    Oecologia; 2016 Dec; 182(4):1031-1043. PubMed ID: 27586695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of demographic structure on key properties of stochastic density-independent population dynamics.
    Vindenes Y; Sæther BE; Engen S
    Theor Popul Biol; 2012 Dec; 82(4):253-63. PubMed ID: 22051856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integral projection models for finite populations in a stochastic environment.
    Vindenes Y; Engen S; Saether BE
    Ecology; 2011 May; 92(5):1146-56. PubMed ID: 21661575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trait-based predictions and responses from laboratory mite populations to harvesting in stochastic environments.
    Smallegange IM; Ens HM
    J Anim Ecol; 2018 Jul; 87(4):893-905. PubMed ID: 29931772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extinction in relation to demographic and environmental stochasticity in age-structured models.
    Engen S; Lande R; aether BE; Weimerskirch H
    Math Biosci; 2005 Jun; 195(2):210-27. PubMed ID: 15907948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying stochastic and Bayesian integral projection modeling to amphibian population viability analysis.
    Messerman AF; Clause AG; Gray LN; Krkošek M; Rollins HB; Trenham PC; Shaffer HB; Searcy CA
    Ecol Appl; 2023 Mar; 33(2):e2783. PubMed ID: 36478484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting [corrected] extinction risk in spite of predator-prey oscillations.
    Sabo JL; Gerber LR
    Ecol Appl; 2007 Jul; 17(5):1543-54. PubMed ID: 17708227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal life schedule with stochastic growth in age-size structured models: theory and an application.
    Oizumi R; Takada T
    J Theor Biol; 2013 Apr; 323():76-89. PubMed ID: 23391431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling effects of nonbreeders on population growth estimates.
    Lee AM; Reid JM; Beissinger SR
    J Anim Ecol; 2017 Jan; 86(1):75-87. PubMed ID: 27625075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic game dynamics under demographic fluctuations.
    Huang W; Hauert C; Traulsen A
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9064-9. PubMed ID: 26150518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-evaluating the effect of harvesting regimes on Nile crocodiles using an integral projection model.
    Wallace K; Leslie A; Coulson T
    J Anim Ecol; 2013 Jan; 82(1):155-65. PubMed ID: 22963590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demographic stochasticity, allee effects, and extinction: the influence of mating system and sex ratio.
    Lee AM; Saether BE; Engen S
    Am Nat; 2011 Mar; 177(3):301-13. PubMed ID: 21460539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic stable population growth in integral projection models: theory and application.
    Ellner SP; Rees M
    J Math Biol; 2007 Feb; 54(2):227-56. PubMed ID: 17123085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The demographic consequences of growing older and bigger in oyster populations.
    Moore JL; Lipcius RN; Puckett B; Schreiber SJ
    Ecol Appl; 2016 Oct; 26(7):2206-2217. PubMed ID: 27755725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of size-dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model.
    Childs DZ; Rees M; Rose KE; Grubb PJ; Ellner SP
    Proc Biol Sci; 2004 Feb; 271(1537):425-34. PubMed ID: 15101702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical approach to quasi-extinction forecasting.
    Holmes EE; Sabo JL; Viscido SV; Fagan WF
    Ecol Lett; 2007 Dec; 10(12):1182-98. PubMed ID: 17803676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproductive value and the stochastic demography of age-structured populations.
    Engen S; Lande R; Saether BE; Dobson FS
    Am Nat; 2009 Dec; 174(6):795-804. PubMed ID: 19842946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extinction rate of a population under both demographic and environmental stochasticity.
    Halley JM; Iwasa Y
    Theor Popul Biol; 1998 Feb; 53(1):1-15. PubMed ID: 9500907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stochastic model for annual reproductive success.
    Kendall BE; Wittmann ME
    Am Nat; 2010 Apr; 175(4):461-8. PubMed ID: 20163244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life-history models of extinction: a test with island spiders.
    Schoener TW; Clobert J; Legendre S; Spiller DA
    Am Nat; 2003 Nov; 162(5):558-73. PubMed ID: 14618535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.