These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27586754)

  • 1. Simulation of the pressure field beneath a turbulent boundary layer using realizations of uncorrelated wall plane waves.
    Maxit L
    J Acoust Soc Am; 2016 Aug; 140(2):1268. PubMed ID: 27586754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of wall pressure fields of non-homogeneous turbulent boundary layers for vibroacoustic simulations.
    Guillon C; Redon E; Maxit L
    J Acoust Soc Am; 2022 Feb; 151(2):1039. PubMed ID: 35232115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of flow induced sound and vibration of periodically stiffened plates.
    Maxit L; Denis V
    J Acoust Soc Am; 2013 Jan; 133(1):146-60. PubMed ID: 23297891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation.
    Bravo T; Maury C
    J Acoust Soc Am; 2011 Jan; 129(1):143-53. PubMed ID: 21302997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stationarity and homogeneity assumptions in wavenumber-frequency representation of turbulent boundary layer wall pressure.
    Gloerfelt X
    J Acoust Soc Am; 2020 Oct; 148(4):2151. PubMed ID: 33138542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental prediction of the vibration response of panels under a turbulent boundary layer excitation from sensitivity functions.
    Marchetto C; Maxit L; Robin O; Berry A
    J Acoust Soc Am; 2018 May; 143(5):2954. PubMed ID: 29857754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of airfoil surface pressure due to incident turbulence using realizations of uncorrelated wall plane waves.
    Karimi M; Croaker P; Skvortsov A; Maxit L; Kirby R
    J Acoust Soc Am; 2021 Feb; 149(2):1085. PubMed ID: 33639823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-equivalent deterministic excitation method application for experimental reproduction of a structural response to a turbulent boundary layer excitation.
    Mazzeo G; Ichchou M; Petrone G; Bareille O; De Rosa S; Franco F
    J Acoust Soc Am; 2022 Sep; 152(3):1498. PubMed ID: 36182299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproduction of random pressure fields based on planar nearfield acoustic holography.
    Robin O; Berry A; Moreau S
    J Acoust Soc Am; 2013 Jun; 133(6):3885-99. PubMed ID: 23742343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of broadband acoustic power radiated from a turbulent boundary layer-driven reinforced finite plate section due to rib and boundary forces.
    Rumerman ML
    J Acoust Soc Am; 2002 Mar; 111(3):1274-9. PubMed ID: 11931304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inclusion of localized forces due to turbulent boundary layer convected pressure at junctions of coplanar structural sections.
    Rumerman ML
    J Acoust Soc Am; 2008 Mar; 123(3):1392-8. PubMed ID: 18345828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental vibroacoustic testing of plane panels using synthesized random pressure fields.
    Robin O; Berry A; Moreau S
    J Acoust Soc Am; 2014 Jun; 135(6):3434-45. PubMed ID: 24907807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A substructuring approach for modeling the acoustic scattering from stiffened submerged shells coupled to non-axisymmetric internal structures.
    Meyer V; Maxit L; Audoly C
    J Acoust Soc Am; 2016 Sep; 140(3):1609. PubMed ID: 27914390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
    Gravenkamp H; Prager J; Saputra AA; Song C
    J Acoust Soc Am; 2012 Sep; 132(3):1358-67. PubMed ID: 22978864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.
    Sengupta TK; Bhaumik S; Bhumkar YG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wave field synthesis approach to reproduction of spatially correlated sound fields.
    Berry A; Dia R; Robin O
    J Acoust Soc Am; 2012 Feb; 131(2):1226-39. PubMed ID: 22352497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the acoustic response of cavities to improve microphone array measurements in closed test section wind tunnels.
    VanDercreek C; Avallone F; Ragni D; Snellen M
    J Acoust Soc Am; 2022 Jan; 151(1):322. PubMed ID: 35105038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibroacoustic response of panels under diffuse acoustic field excitation from sensitivity functions and reciprocity principles.
    Marchetto C; Maxit L; Robin O; Berry A
    J Acoust Soc Am; 2017 Jun; 141(6):4508. PubMed ID: 28679264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of broadband acoustic power due to rib forces on a reinforced panel under turbulent boundary layer-like pressure excitation. I. Derivations using string model.
    Rumerman ML
    J Acoust Soc Am; 2001 Feb; 109(2):563-75. PubMed ID: 11248963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting History Effects in Adverse-Pressure-Gradient Turbulent Boundary Layers.
    Vinuesa R; Örlü R; Sanmiguel Vila C; Ianiro A; Discetti S; Schlatter P
    Flow Turbul Combust; 2017; 99(3):565-587. PubMed ID: 30069157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.