These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27586763)

  • 1. Cavitation-induced damage of soft materials by focused ultrasound bursts: A fracture-based bubble dynamics model.
    Movahed P; Kreider W; Maxwell AD; Hutchens SB; Freund JB
    J Acoust Soc Am; 2016 Aug; 140(2):1374. PubMed ID: 27586763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-Induced Bubble Clusters in Tissue-Mimicking Agar Phantoms.
    Movahed P; Kreider W; Maxwell AD; Dunmire B; Freund JB
    Ultrasound Med Biol; 2017 Oct; 43(10):2318-2328. PubMed ID: 28739379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of shocked-bubble expansion due to tissue confinement with application to shock-wave lithotripsy.
    Freund JB
    J Acoust Soc Am; 2008 May; 123(5):2867-74. PubMed ID: 18529202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and characterization of a vitreous mimicking material for radiation force imaging.
    Negron LA; Viola F; Black EP; Toth CA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Nov; 49(11):1543-51. PubMed ID: 12484477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro study of the mechanical effects of shock-wave lithotripsy.
    Howard D; Sturtevant B
    Ultrasound Med Biol; 1997; 23(7):1107-22. PubMed ID: 9330454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative observations of cavitation activity in a viscoelastic medium.
    Collin JR; Coussios CC
    J Acoust Soc Am; 2011 Nov; 130(5):3289-96. PubMed ID: 22088001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavitation nucleation and its ductile-to-brittle shape transition in soft gels under translational mechanical impact.
    Kim C; Choi WJ; Kang W
    Acta Biomater; 2022 Apr; 142():160-173. PubMed ID: 35189381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.
    Vlaisavljevich E; Maxwell A; Warnez M; Johnsen E; Cain CA; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):341-52. PubMed ID: 24474139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of heat and mass diffusion on freely oscillating bubbles in a viscoelastic, tissue-like medium.
    Barajas C; Johnsen E
    J Acoust Soc Am; 2017 Feb; 141(2):908. PubMed ID: 28253700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.
    Freund JB; Colonius T; Evan AP
    Ultrasound Med Biol; 2007 Sep; 33(9):1495-503. PubMed ID: 17507147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic cavitation rheometry.
    Mancia L; Yang J; Spratt JS; Sukovich JR; Xu Z; Colonius T; Franck C; Johnsen E
    Soft Matter; 2021 Mar; 17(10):2931-2941. PubMed ID: 33587083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.
    Zilonova E; Solovchuk M; Sheu TWH
    Ultrason Sonochem; 2018 Jan; 40(Pt A):900-911. PubMed ID: 28946501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation velocity and attenuation of a shear wave pulse measured by ultrasound detection in agarose and polyacrylamide gels.
    Klinkosz T; Lewa CJ; Paczkowski J
    Ultrasound Med Biol; 2008 Feb; 34(2):265-75. PubMed ID: 17935864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).
    Zhou Y; Gao XW
    Phys Med Biol; 2016 Sep; 61(18):6651-6667. PubMed ID: 27541633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcavitation dynamics in viscoelastic tissue during histotripsy process.
    Abu-Nab AK; Mohamed KG; Abu-Bakr AF
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35533648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal.
    Filonets T; Solovchuk M
    Ultrason Sonochem; 2022 Aug; 88():106056. PubMed ID: 35728380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.