These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 27586788)
1. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism. Cao W; Ma W; Wang X; Zhang B; Cao X; Chen K; Li Y; Ouyang P Sci Rep; 2016 Sep; 6():32640. PubMed ID: 27586788 [TBL] [Abstract][Full Text] [Related]
2. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis. Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394 [TBL] [Abstract][Full Text] [Related]
3. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Tao S; Qian Y; Wang X; Cao W; Ma W; Chen K; Ouyang P Microb Cell Fact; 2018 Sep; 17(1):147. PubMed ID: 30227873 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of pinocembrin from glucose using engineered escherichia coli. Kim BG; Lee H; Ahn JH J Microbiol Biotechnol; 2014 Nov; 24(11):1536-41. PubMed ID: 25085569 [TBL] [Abstract][Full Text] [Related]
5. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Wu J; Zhang X; Zhou J; Dong M Bioresour Technol; 2016 Oct; 218():999-1007. PubMed ID: 27450982 [TBL] [Abstract][Full Text] [Related]
6. Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin. Wu J; Zhang X; Dong M; Zhou J J Biotechnol; 2016 Aug; 231():183-192. PubMed ID: 27297547 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Guo L; Chen X; Li LN; Tang W; Pan YT; Kong JQ Microb Cell Fact; 2016 Feb; 15():27. PubMed ID: 26846670 [TBL] [Abstract][Full Text] [Related]
8. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480 [TBL] [Abstract][Full Text] [Related]
9. Optimization of Pinocembrin Biosynthesis in Tous Mohedano M; Mao J; Chen Y ACS Synth Biol; 2023 Jan; 12(1):144-152. PubMed ID: 36534476 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Wu J; Du G; Zhou J; Chen J Metab Eng; 2013 Mar; 16():48-55. PubMed ID: 23246524 [TBL] [Abstract][Full Text] [Related]
11. Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. Kaneko M; Hwang EI; Ohnishi Y; Horinouchi S J Ind Microbiol Biotechnol; 2003 Aug; 30(8):456-61. PubMed ID: 12759810 [TBL] [Abstract][Full Text] [Related]
12. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Cheng Z; Jiang J; Wu H; Li Z; Ye Q Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325 [TBL] [Abstract][Full Text] [Related]
13. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827 [TBL] [Abstract][Full Text] [Related]
14. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Wu J; Zhang X; Zhu Y; Tan Q; He J; Dong M Sci Rep; 2017 May; 7(1):1459. PubMed ID: 28469159 [TBL] [Abstract][Full Text] [Related]
15. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539 [TBL] [Abstract][Full Text] [Related]
16. Improve the Biosynthesis of Baicalein and Scutellarein via Manufacturing Self-Assembly Enzyme Reactor Ji D; Li J; Xu F; Ren Y; Wang Y ACS Synth Biol; 2021 May; 10(5):1087-1094. PubMed ID: 33880917 [TBL] [Abstract][Full Text] [Related]
17. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2 Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928 [TBL] [Abstract][Full Text] [Related]
18. A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. Liang JL; Guo LQ; Lin JF; He ZQ; Cai FJ; Chen JF World J Microbiol Biotechnol; 2016 Jun; 32(6):102. PubMed ID: 27116968 [TBL] [Abstract][Full Text] [Related]
19. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Zhu S; Wu J; Du G; Zhou J; Chen J Appl Environ Microbiol; 2014 May; 80(10):3072-80. PubMed ID: 24610848 [TBL] [Abstract][Full Text] [Related]
20. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]