These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2758679)

  • 41. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis - Induced brain dysfunction.
    Gamal M; Moawad J; Rashed L; Morcos MA; Sharawy N
    Brain Res; 2018 Apr; 1685():19-28. PubMed ID: 29428597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tetrahydrobiopterin biosynthesis, regeneration and functions.
    Thöny B; Auerbach G; Blau N
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):1-16. PubMed ID: 10727395
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus.
    Xu J; Wu Y; Song P; Zhang M; Wang S; Zou MH
    Circulation; 2007 Aug; 116(8):944-53. PubMed ID: 17679617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Tetrahydroblopterin. Metabolism and metabolic role of unconjugated pteridines (author's transl)].
    Dhondt JL; Farriaux JP
    Pathol Biol (Paris); 1980 Jun; 28(6):397-405. PubMed ID: 6994053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tetrahydrobiopterin contributes to the proliferation of mesangial cells and accumulation of extracellular matrix in early-stage diabetic nephropathy.
    Wang J; Yang Q; Nie Y; Guo H; Zhang F; Zhou X; Yin X
    J Pharm Pharmacol; 2017 Feb; 69(2):182-190. PubMed ID: 28033650
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antioxidation activity of tetrahydrobiopterin in pheochromocytoma PC 12 cells.
    Shen RS; Zhang YX
    Chem Biol Interact; 1991; 78(3):307-19. PubMed ID: 2070435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disturbed biopterin and folate metabolism in the Qdpr-deficient mouse.
    Xu F; Sudo Y; Sanechika S; Yamashita J; Shimaguchi S; Honda S; Sumi-Ichinose C; Mori-Kojima M; Nakata R; Furuta T; Sakurai M; Sugimoto M; Soga T; Kondo K; Ichinose H
    FEBS Lett; 2014 Nov; 588(21):3924-31. PubMed ID: 25240194
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tetrahydrobiopterin: biochemistry and pathophysiology.
    Werner ER; Blau N; Thöny B
    Biochem J; 2011 Sep; 438(3):397-414. PubMed ID: 21867484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of tetrahydrobiopterin in murine locus coeruleus by HPLC with fluorescence detection.
    Kaneko YS; Mori K; Nakashima A; Nagatsu I; Nagatsu T; Ota A
    Brain Res Brain Res Protoc; 2001 Aug; 8(1):25-31. PubMed ID: 11522525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peripherally administered reduced pterins do enter the brain.
    Kapatos G; Kaufman S
    Science; 1981 May; 212(4497):955-6. PubMed ID: 7233193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunological studies on the participation of 6-pyruvoyl tetrahydropterin (2'-oxo) reductase, an aldose reductase, in tetrahydrobiopterin biosynthesis.
    Milstien S; Kaufman S
    Biochem Biophys Res Commun; 1989 Dec; 165(2):845-50. PubMed ID: 2597161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ascorbic acid and N-acetyl cysteine prevent uncoupling of nitric oxide synthase and increase tolerance to ischemia/reperfusion injury in diabetic rat heart.
    Okazaki T; Otani H; Shimazu T; Yoshioka K; Fujita M; Iwasaka T
    Free Radic Res; 2011 Oct; 45(10):1173-83. PubMed ID: 21756052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of thiols in the apparent activation of rat brain nitric oxide synthase (NOS).
    Komori Y; Hyun J; Chiang K; Fukuto JM
    J Biochem; 1995 Apr; 117(4):923-7. PubMed ID: 7592560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decrease in tetrahydrobiopterin content and neurotransmitter amine biosynthesis in rat brain by an inhibitor of guanosine triphosphate cyclohydrolase.
    Suzuki S; Watanabe Y; Tsubokura S; Kagamiyama H; Hayaishi O
    Brain Res; 1988 Apr; 446(1):1-10. PubMed ID: 2453255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulations of rat hepatic phenylalanine hydroxylase due to induced diabetes or high-protein diet.
    Donlon J; Beirne E
    Biochem Biophys Res Commun; 1982 Sep; 108(2):746-51. PubMed ID: 6756405
    [No Abstract]   [Full Text] [Related]  

  • 56. Tetrahydrobiopterin and biogenic amine metabolism in the hph-1 mouse.
    Hyland K; Gunasekera RS; Engle T; Arnold LA
    J Neurochem; 1996 Aug; 67(2):752-9. PubMed ID: 8764604
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein kinase C of sepiapterin reductase, the terminal enzyme in the biosynthetic pathway of tetrahydrobiopterin.
    Katoh S; Sueoka T; Yamamoto Y; Takahashi SY
    FEBS Lett; 1994 Mar; 341(2-3):227-32. PubMed ID: 8137944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Indirect oxidation of 6-tetrahydrobiopterin by tyrosinase.
    Jung JH; Choi SW; Han S
    Biochem Biophys Res Commun; 2004 Feb; 314(4):937-42. PubMed ID: 14751222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.
    Landmesser U; Dikalov S; Price SR; McCann L; Fukai T; Holland SM; Mitch WE; Harrison DG
    J Clin Invest; 2003 Apr; 111(8):1201-9. PubMed ID: 12697739
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reversal of inducible nitric oxide synthase uncoupling unmasks tolerance to ischemia/reperfusion injury in the diabetic rat heart.
    Okazaki T; Otani H; Shimazu T; Yoshioka K; Fujita M; Katano T; Ito S; Iwasaka T
    J Mol Cell Cardiol; 2011 Mar; 50(3):534-44. PubMed ID: 21182845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.